
Java Tutorial

 • Java is a high-level programming language

originally developed by Sun Microsystems and

released in 1995. Java runs on a variety of

platforms, such as Windows, Mac OS, and the

various versions of UNIX. This tutorial gives a

complete understanding on Java.

• This reference will take you through simple

and practical approach while learning Java

Programming language.

Prerequisites

 • Before you start doing practice with various

types of examples given in this reference, I'm

making an assumption that you are already

aware about what is a computer program and

what is a computer programming language.

Where It Is Used
According to Sun, 3 billion devices run Java. There are

many devices where Java is currently used. Some of
them are as follows:

1. Desktop Applications such as acrobat reader, media
player, antivirus etc.

2. Web Applications such as irctc.co.in

3. Enterprise Applications such as banking applications.

4. Mobile

5. Embedded System

6. Smart Card

7. Robotics

8. Games etc.

http://javatpoint.com

Types Of Java Applications
There are mainly 4 type of applications that can be

created using Java:

1) Standalone Application

 It is also known as desktop application or window-
based application. An application that we need to
install
on every machine such as media player, antivirus etc.
AWT and Swing are used in Java for creating
standalone applications.

 2) Web Application

 An application that runs on the server side and creates
dynamic page, is called web application. Currently,
servlet, jsp, struts, jsf etc. technologies are used for
creating web applications in Java.

Cont..

3) Enterprise Application

 An application that is distributed in nature, such as
banking applications etc. It has the advantage of high
level security, load balancing and clustering. In Java,
EJB is used for creating enterprise applications.

4) Mobile Application

 An application that is created for mobile devices.
Currently Android and Java ME are used for creating
mobile
applications.

Java Overview
• Java programming language was originally

developed by Sun Microsystems, which was
initiated by James Gosling and released in 1995
as core component of Sun Microsystems Java
platform (Java 1.0 [J2SE]).

• As of December 08 the latest release of the Java
Standard Edition is 6 (J2SE).

• With the advancement of Java and its wide
spread popularity, multiple configurations were
built to suite various types of platforms.

• Ex: J2EE for Enterprise Applications, J2ME for
Mobile Applications.

Features of Java

9.Interpreted

10.High Performance

11. Multithreaded

12.Distributed

I. Simple

2. Object-oriented

3. Platform independent

4.Secured

5. Robust

6. Architecture neutral

7. Portable

8. Dynamic

Features Of Java

• Object Oriented : In java everything is an Object.
Java can be easily extended since it is based on
the Object model.

• Platform independent: Unlike many other
programming languages including C and C++
when Java is compiled, it is not compiled into
platform specific machine, rather into platform
independent byte code. This byte code is
distributed over the web and interpreted by
virtual Machine (JVM) on whichever platform it is
being run.

Features Of Java Cont..
• Simple :Java is designed to be easy to learn. If

you understand the basic concept of OOP java
would be easy to master.

• Secure : With Java's secure feature it enables to
develop virus-free, tamper-free systems.
Authentication techniques are based on public-
key encryption.

• Architectural- neutral :Java compiler generates
an architecture-neutral object file format which
makes the compiled code to be executable on
many processors, with the presence Java runtime
system.

Features Of Java Cont..
• Portable :being architectural neutral and having no

implementation dependent aspects of the specification
makes Java portable. Compiler and Java is written in
ANSI C with a clean portability boundary means We
may carry the Java byte code to any platform.

• Robust : Robust simply means strong. Java uses strong
memory management. There are lack of pointers that
avoids security problem. There is automatic garbage
collection in Java. There is exception handling and type
checking mechanism in Java. All these points makes
Java robust.

• Multi-threaded : With Java's multi-threaded feature it
is possible to write programs that can do many tasks
simultaneously. This design feature allows developers
to construct smoothly running interactive applications.

Features Of Java Cont..
• Interpreted :Java byte code is translated on the fly to

native machine instructions and is not stored
anywhere. The development process is more rapid and
analytical since the linking is an incremental and light
weight process.

• High Performance: With the use of Just-In-Time
compilers Java enables high performance.

• Distributed :Java is designed for the distributed
environment of the internet.

• Dynamic : Java is considered to be more dynamic than
C or C++ since it is designed to adapt to an evolving
environment. Java programs can carry extensive
amount of run-time information that can be used to
verify and resolve accesses to objects on run-time.

My First Java Programme

public class MyFirstJavaProgram {

 public static void main(String []args) {

 System.out.println("Hello World");

 }

}

Understanding first java program

 • class is used to declare a class in Java.

• public is an access modifier which represents visibility,
it means it is visible to all.

• static is a keyword, if we declare any method as static,
it is known as static method. The core advantage of
static method is that there is no need to create object
to invoke the static method. The main method is
executed by the JVM, so it doesn't require to create
object to invoke the main method.So it saves memory.

• void is the return type of the method, it means it
doesn't return any value,
main represents startup of the program.

• String[] args is used for command line argument. We
will learn it later.
System.out.println() is used print statement.

What happens at compile time?

 At compile time, Java file is compiled by Java Compiler (It

does not interact with OS) and converts the Java code

into bytecode.

What happens at runtime?

Classloader: is the subsystem of JVM that is used to load class files.

Bytecode Verifier: checks the code fragments for illegal code that can violate accesss

right to objects.

Interpreter: read bytecode stream then execute the instructions.

Questions

• Can you save a java source file by other name

than the class name?

• Can you have a empty java file?

• What if no one class have main function?

• Hoǁ to pƌiŶt ͞Hello Woƌld͟ ǁithout ŵaiŶ
function?

• Can you have multiple classes in a java source

file?

Java is an Object Oriented Language

As a language that has the Object Oriented

feature Java supports the following

fundamental concepts:

1) Classes

2) Objects

3) Encapsulation

4) Abstraction

5) Inheritance

6) Polymorphism

Objects

  Let us now look deep into what are objects. If

we consider the real-world we can find many

objects around us, Cars, Dogs, Humans etc. All

these objects have a state and behavior.

 An object is an instance of a class. The

relationship is such that many objects can be

created using one class. Each object has its

own data but its underlying structure (i.e., the

type of data it stores, its behaviors) are

defined by the class.

http://java.about.com/od/c/g/Class.htm

Classes

 A class--the basic building block of an object-

oriented language such as Java

 A class is a blue print from which individual

objects are created.

 A class specifies the design of an object. It

states what data an object can hold and the

way it can behave when using the data.

 Class is a template that describes the data and

behavior associated with instances of that

class.

Classes

 The data associated with a class or object is

stored in variables.

 The behavior associated with a class or object

is implemented with methods.(Methods are

similar to the functions or procedures in

procedural languages such as C).

Class Example

public class Book {

 private String title;

 private String author;

 private String publisher;

 public Book(String bookTitle, String authorName,
String publisherName) {

 title = bookTitle;

 author = authorName;

 publisher = publisherName;

 }

//all getter and setter methods

 }

Object Example

An instance of this class will be a book object:

Book firstBook = Ŷeǁ Book;͞Coŵplete
RefeƌeŶĐe",͞ ABC",͞ XY)");

Objects can be created by using new keyword in java.

As mentioned previously a class provides the blueprints for
objects. So basically an object is created from a class. In
java the new key word is used to create new objects.

There are three steps when creating an object from a class:

• Declaration . A variable declaration with a variable name with
an object type. Like Book firstBook

• Instantiation . The 'new' key word is used to create the
object.

• Initialization . The 'new' keyword is followed by a call to a
constructor. This call initializes the new object.

 eg. new Book();

More Details Of Class
• A class can contain any of the following

variable types.

1) Local variables

2) Instance variables

3) Class variables

Local Variable

 Local variable are variables defined inside
methods, constructors or blocks.

 The variable will be declared and initialized
within the method and the variable will be
destroyed when the method has completed.

 Eg.

 Public void setTitle(String title){

this.title=title;

}

Rules For Local Variable
• Local variables are declared in methods, constructors,

or blocks.

• Local variables are created when the method,
constructor or block is entered and the variable will be
destroyed once it exits the method, constructor or
block.

• Access modifiers cannot be used for local variables.

• Local variables are visible only within the declared
method, constructor or block.

• Local variables are implemented at stack level
internally.

• There is no default value for local variables so local
variables should be declared and an initial value should
be assigned before the first use.

Example Of Local Variable

Problem With Local Variable

Following example uses age without initializing it, so it would give an error at the time of compilation.

Instance variables

 Instance variables are variables within a class
but outside any method. These variables are
instantiated when the class is loaded. Instance
variables can be accessed from inside any
method, constructor or blocks of that
particular class.

 Eg.

 private String title;

 private String author;

 private String publisher;

Rules For Instance Variable

• Instance variables are declared in a class, but outside a
method, constructor or any block.

• When a space is allocated for an object in the heap a
slot for each instance variable value is created.

• Instance variables are created when an object is
created with the use of the key word 'new' and
destroyed when the object is destroyed.

• Instance variables hold values that must be referenced
by more than one method, constructor or block, or
essential parts of an object.s state that must be
present through out the class.

• Instance variables can be declared in class level before
or after use.

Rules For Instance Variable
• Access modifiers can be given for instance variables.

• The instance variables are visible for all methods,
constructors and block in the class. Normally it is
recommended to make these variables private (access
level).However visibility for subclasses can be given for
these variables with the use of access modifiers.

• Instance variables have default values. For numbers the
default value is 0, for Booleans it is false and for object
references it is null. Values can be assigned during the
declaration or within the constructor.

• Instance variables can be accessed directly by calling the
variable name inside the class. However within static
methods and different class (when instance variables are
given accessibility) the should be called using the fully
qualified name .ObjectReference.VariableName.

Example Of Instance Variable

Class variables

 Class variables are variables declared with in a

class, outside any method, with the static

keyword.

 Eg.

 private static int count=0;

Rules For Class/Static Variable
• Class variables also known as static variables are

declared with the static keyword in a class, but outside
a method, constructor or a block.

• There would only be one copy of each class variable
per class, regardless of how many objects are created
from it.

• Static variables are rarely used other than being
declared as constants. Constants are variables that are
declared as public/private, final and static. Constant
variables never change from their initial value.

• Static variables are stored in static memory. It is rare to
use static variables other than declared final and used
as either public or private constants.

• Static variables are created when the program starts
and destroyed when the program stops.

Rules For Class/Static Variable
• Visibility is similar to instance variables. However, most

static variables are declared public since they must be
available for users of the class.

• Default values are same as instance variables. For numbers
the default value is 0, for Booleans it is false and for object
references it is null. Values can be assigned during the
declaration or within the constructor. Additionally values
can be assigned in special static initializer blocks.

• Static variables can be accessed by calling with the class
name . ClassName.VariableName.

• When declaring class variables as public static final, then
variables names (constants) are all in upper case. If the
static variables are not public and final the naming syntax is
the same as instance and local variables.

Example Of Class/Static Variable

• A class can have any number of methods to

access the value of various kind of methods.

 Like Book Class can have

 bookIssue()

 addBook()

 deleteBook()

 updateBook()

Source file declaration rules

 • There can be only one public class per source file.

• A source file can have multiple non public classes.

• The public class name should be the name of the source file
as well which should be appended by .java at the end. For
example : The class name is . public class Employee{} Then
the source file should be as Employee.java.

• If the class is defined inside a package, then the package
statement should be the first statement in the source file.

• If import statements are present then they must be written
between the package statement and the class declaration.
If there are no package statements then the import
statement should be the first line in the source file.

• Import and package statements will imply to all the classes
present in the source file. It is not possible to declare
different import and/or package statements to different
classes in the source file.

A Simple Case Study

 • For our case study we will be creating two

classes. They are Employee and EmployeeTest.

• First open notepad and add the following

code. Remember this is the Employee class

and the class is a public class. Now save this

source file with the name Employee.java.

• The Employee class has four instance variables

name, age, designation and salary. The class

has one explicitly defined constructor which

takes a parameter.

A Simple Case Study

A Simple Case Study

How To Run

42

 Java Keywords

Java Basic Datatypes

43

There are two data types available in Java:

• Primitive Data Types

• Reference/Object Data Types

Primitive Datatypes

Data type Byt

es

Min Value Max Value Literal Values

byte 1 -27 27 – 1 123

short 2 -215 215 – 1 1234

int 4 -231 231 – 1 12345, 086, 0x675

long 8 -263 263 – 1 123456

float 4 - - 1.0

double 8 - - 123.86

char 2 0 216 – 1 ‘a’, ‘\n’

boolean - - - true, false

44

Reference Data Types

 • Reference variables are created using defined
constructors of the classes. They are used to
access objects. These variables are declared to be
of a specific type that cannot be changed. For
example, Employee, Puppy etc.

• Class objects, and various type of array variables
come under reference data type.

• Default value of any reference variable is null.

• A reference variable can be used to refer to any
object of the declared type or any compatible
type.

• Example : Animal animal = new Animal("giraffe");

Java Modifier Types

 • Modifiers are keywords that you add to those

definitions to change their meanings. The Java

language has a wide variety of modifiers,

including the following:

• Java Access Modifiers

• Non Access Modifiers

 To use a modifier, you include its keyword in

the definition of a class, method, or variable.

The modifier precedes the rest of the

statement, as in the following examples (Italic

ones)

http://www.tutorialspoint.com/java/java_access_modifiers.htm
http://www.tutorialspoint.com/java/java_nonaccess_modifiers.htm

Java Modifiers

Modifier Class Class

Variables

Methods Method

Variables

public   

private  

protected  

default   

final    

abstract  

strictfp  

transient 

synchronized 

native 

volatile 

static    47

Modifier Example

Access Control Modifiers

 Java provides a number of access modifiers to

set access levels for classes, variables,
methods and constructors. The four access
levels are:

• Default:-Visible to the package. No modifiers
are needed.

• Private:-Visible to the class only .

• Public:-Visible to the world.

• Protected:-Visible to the package and all
subclasses.

Non Access Modifiers

 Java provides a number of non-access modifiers

to achieve many other functionality.

• The static modifier for creating class methods and
variables

• The final modifier for finalizing the
implementations of classes, methods, and
variables.

• The abstract modifier for creating abstract classes
and methods.

• The synchronized and volatile modifiers, which
are used for threads.

Naming convention

 A naming convention is a rule to follow as you

decide what to name your identifiers (e.g. class,

package,variable, method, etc.), but it is not

mandatory to follow that is why it is known as

convention not rule.

Advantage:

 By using standard Java naming conventions they

make their code easier to read for themselves

and for other programmers. Readability of Java

code is important because it means less time is

spent trying to figure out what the code does.

Class Name should begin with uppercase letter and

be a noun e.g.String,System,Thread etc.

Interface Name should begin with uppercase letter and

be an adjective (whereever possible),

e.g.Runnable,ActionListener etc.

Method Name should begin with lowercase letter and

be a verb. e.g.main(),print{),println(),

actionPerformed() etc.

Variable Name should begin with lowercase letter e.g.

firstName,orderNumber etc.

Package Name should be in lowercase letter, e.g.

java.lang.sql.util etc.

Constant Name should be in uppercase letter, e.g.

RED,YELLOW,MAX_PRIORITY etc.

Method Overloading

 Method overloading means when two or more
methods have the same name but a different
signature.

 Signature of a method is nothing but a combination
of its name and the sequence of its parameter
types.

Advantages of method overloading

 It allows you to use the same name for a group of
methods that basically have the same purpose.

 Method overloading increases the readability of the
program.

Method Overloading

Different ways to overload the method

 There are two ways to overload the method in Java

• 1. By changing number of arguments

• 2. By changing the data type

 Note: In Java, Methood Overloading is not possible

by changing return type of the method.

Questions
Que) Why Method Overloaing is not possible by

changing the return type of method?

Que) Can we overload main() method?

Method Overloading and TypePromotion

Example

Example

Example

Constructor

 • Constructor is a special type of method that is used

to initialize the state of an object/initialize a value

to instance variable.

• Constructor is invoked at the time of object

creation. It constructs the values i.e. data for the

object that is why it is known as constructor.

• Constructor is just like the instance method but it

does not have any explicit return type.

Characteristics or Rules for Constructor

1. Constructor name must be same as its class name

2. Constructor must have no explicit return type.

3.Constructor can have arguments

4.Constructor Can be overloaded.

5.Constructor should be public but it can have other

access specifier too.

5.Constructor will automatically invoke when you

create object of class using new keyword.

6.Constructor cannot be call explicitly.

7.Constructor cannot be inherited.

Types Of Constructor

 • There are two types of constructors:

 1) default constructor (no-arg constructor)
2) parameterized constructor

Remember Point:-

 1ͿIf you doŶ’t pƌoǀide aŶy ĐoŶstƌuĐtoƌ iŶ youƌ Đlass
compiler will provide default constructor.

 2)moment add any constructor in class u will loose to
get default constructor from compiler.

 3)Your class should have default constructor in case of
Inheritance

 4)Same constructor can be call to other constructor
using this and derived class constructor using super

 keyword

Questions
• What If there is no constructor in a class, is compiler

automatically creates a default constructor?

• What default constructor do.

• What the use of parametrize constructor

• What the difference between constructor and
methods.

• Does constructor can have void return type?

• Does copy constructor is available in java.

• What the alternative of copy constructor in java?

• Can constructor perform other tasks instead of
initialization?

Static

• The static keyword is used in Java mainly for

memory management. We may apply static

keyword with variables, methods and blocks. The

static keyword belongs to the class rather than

instance of the class.

 The static can be:

 1.variable (also known as class variable)

2.method (also known as class method)

3.block

Static Variable

• If you declare any variable as static, it is known

static variable

• It is a variable which belongs to the class and not to

object instance.

• The static variable can be used to refer the common

property of all objects (that is not unique for

each object) e.g. company name of

employees,college name of students etc.

• The static variable gets memory only once in class

area at the time of class loading.

• It can be initialize at the time of Object creation.

Static Variable
• Static variables are initialized only once , at the start

of the execution . These variables will be initialized
first, before the initialization of any instance
variables.

• A single copy to be shared by all instances of the
class

• A static variable can be accessed directly by
the class name aŶd doesŶ’t Ŷeed aŶy oďjeĐt.

• Syntax : <class-name>.<variable-name>.

• Static variable can be final to make constant.

• Syntax: public static final double
RATE_OF_INT=15.5;

Static Variable Memory Diagram

Static Method
• If you apply static keyword with any method, it is

known as static method.

• A static method belongs to the class rather than
object of a class.

• A static method can be invoked without the need
for creating an instance of a class.

• static method can access static data member and
can change the value of it.

• It is a method which belongs to the class and not to
the object(instance)

• A static method can access only static data. It can
not access non-static data (instance variables)

Static Method

• A static method can call only other static

methods aŶd ĐaŶ’t Đall a ŶoŶ-static method from it.

• A static method can be accessed directly by

the class name aŶd doesŶ’t Ŷeed aŶy oďjeĐt ďut ĐaŶ
be call by object.

• Syntax : <class-name>.<method-name>

• A statiĐ ŵethod ĐaŶŶot ƌefeƌ to ͞this͟ oƌ ͞supeƌ͟
keywords in anyway.

• main method is static , since it must be accessible

for an application to run , before any instantiation

takes place.

Static Block

 The static block, is a block of statement inside a Java

class that will be executed when a class is first

loaded in to the JVM

 class Test{

 static {

 //Code goes here

 }

 }

 A static block helps to initialize the static data

members, just like constructors help to initialize

instance members

Questions

Que)Can we execute a program without main()

method?

This reference in java

 • this keyword in Java is a special keyword which can

be used to represent current object or instance of

any class in Java.

• ͞this͟ can also call constructor of same class in

Java and used to call overloaded constructor.

• if used than it must be first statement in constructor

this() will call no argument constructor.

• and this(parameter) will call one argument

constructor with appropriate parameter.

 Example continue in next slide

http://javarevisited.blogspot.com/2011/10/class-in-java-programming-general.html

example

If member variable and local variable name conflict

than this can be used to refer member variable.

here is an example of this with member variable:

Here local variable interest and member variable

interest conflict which is easily resolve by referring

member variable as this.interest

this is a final variable in Java and you can not assign

value to this. this will result in compilation

you can call methods of class by using this keyword as

shown in below example.

http://javarevisited.blogspot.com/2011/12/final-variable-method-class-java.html

• this can be used to return object. this is a valid return

value.here is an example of using as return value.

• "this" keyword can not be used in static context i.e.

inside static methods or static initializer block.

if use this inside static context you will get compilation

error as shown in below example:

• this can also be passed as method parameters

since it represent current object of class.

• Java This can be used to get the handle of the

current class

 Class className = this.getClass();

 Though this can also be done by, Class

className = ABC.class; // here ABC refers to

the class name and you need to know that!

Java - String Class

 Strings, which are widely used in Java

programming, are a sequence of characters. In

the Java programming language, strings are

objects.

 The Java platform provides the String class to

create and manipulate strings.

Creating Strings:

 The most direct way to create a string is to

write:

 String greeting = "Hello world!";

 String greeting = "Hello world!";

 Whenever it encounters a string literal in your

code, the compiler creates a String object with

its value in this case, "Hello world!'.

 As like any other object, you can create String

objects by using the new keyword and a

constructor.

 The String class has eleven constructors that

allow you to provide the initial value of the

string using different sources

Note: The String class is immutable, so that once it is created a

String object cannot be changed. If there is a necessity to make

a lot of modifications to Strings of characters then you should

use String Buffer & String Builder Classes.

CoŶt….

http://www.tutorialspoint.com/java/java_string_buffer.htm

String Length:

 Methods used to obtain information about an

object are known as accessor methods. One

accessor method that you can use with strings

is the length() method, which returns the

number of characters contained in the string

object.

String palindrome = "Dot saw I was Tod";

int len = palindrome.length();

System.out.println("String Length is : " + len);

o/p:- String Length is : 17

Concatenating Strings:

 The String class includes a method for

concatenating two strings:

 1) method concat

 2) + operator

1) string1.concat(string2);

2) "My name is ".concat("Zara");

3) "Hello," + " world" + "!"

char charAt(int index)

Returns the character at the specified index.

int compareTo(Object o)

Compares this String to another Object.

int compareTo(String anotherString)

Compares two strings lexicographically.

int compareToIgnoreCase(String str)

Compares two strings lexicographically, ignoring case

differences.

String concat(String str)

Concatenates the specified string to the end of this string.

boolean contentEquals(StringBuffer sb)

Returns true if and only if this String represents the same

sequence of characters as the specified StringBuffer.

http://www.tutorialspoint.com/java/java_string_charat.htm
http://www.tutorialspoint.com/java/java_string_charat.htm
http://www.tutorialspoint.com/java/java_string_charat.htm
http://www.tutorialspoint.com/java/java_string_charat.htm
http://www.tutorialspoint.com/java/java_string_charat.htm
http://www.tutorialspoint.com/java/java_string_charat.htm
http://www.tutorialspoint.com/java/java_string_compareto.htm
http://www.tutorialspoint.com/java/java_string_compareto.htm
http://www.tutorialspoint.com/java/java_string_compareto.htm
http://www.tutorialspoint.com/java/java_string_compareto.htm
http://www.tutorialspoint.com/java/java_string_compareto.htm
http://www.tutorialspoint.com/java/java_string_compareto.htm
http://www.tutorialspoint.com/java/java_string_compareto.htm
http://www.tutorialspoint.com/java/java_string_compareto.htm
http://www.tutorialspoint.com/java/java_string_compareto.htm
http://www.tutorialspoint.com/java/java_string_compareto.htm
http://www.tutorialspoint.com/java/java_string_compareto.htm
http://www.tutorialspoint.com/java/java_string_comparetoignorecase.htm
http://www.tutorialspoint.com/java/java_string_comparetoignorecase.htm
http://www.tutorialspoint.com/java/java_string_comparetoignorecase.htm
http://www.tutorialspoint.com/java/java_string_comparetoignorecase.htm
http://www.tutorialspoint.com/java/java_string_comparetoignorecase.htm
http://www.tutorialspoint.com/java/java_string_comparetoignorecase.htm
http://www.tutorialspoint.com/java/java_string_concat.htm
http://www.tutorialspoint.com/java/java_string_concat.htm
http://www.tutorialspoint.com/java/java_string_concat.htm
http://www.tutorialspoint.com/java/java_string_concat.htm
http://www.tutorialspoint.com/java/java_string_concat.htm
http://www.tutorialspoint.com/java/java_string_contentequals.htm
http://www.tutorialspoint.com/java/java_string_contentequals.htm
http://www.tutorialspoint.com/java/java_string_contentequals.htm
http://www.tutorialspoint.com/java/java_string_contentequals.htm
http://www.tutorialspoint.com/java/java_string_contentequals.htm
http://www.tutorialspoint.com/java/java_string_contentequals.htm
http://www.tutorialspoint.com/java/java_string_contentequals.htm
http://www.tutorialspoint.com/java/java_string_contentequals.htm
http://www.tutorialspoint.com/java/java_string_contentequals.htm

static String copyValueOf(char[] data)

Returns a String that represents the character sequence in

the array specified.

static String copyValueOf(char[] data, int offset, int count)

Returns a String that represents the character sequence in

the array specified.

boolean endsWith(String suffix)

Tests if this string ends with the specified suffix.

boolean equals(Object anObject)

Compares this string to the specified object.

boolean equalsIgnoreCase(String anotherString)

Compares this String to another String, ignoring case

considerations.

http://www.tutorialspoint.com/java/java_string_copyvalueof.htm
http://www.tutorialspoint.com/java/java_string_copyvalueof.htm
http://www.tutorialspoint.com/java/java_string_copyvalueof.htm
http://www.tutorialspoint.com/java/java_string_copyvalueof.htm
http://www.tutorialspoint.com/java/java_string_copyvalueof.htm
http://www.tutorialspoint.com/java/java_string_copyvalueof.htm
http://www.tutorialspoint.com/java/java_string_copyvalueof.htm
http://www.tutorialspoint.com/java/java_string_copyvalueof.htm
http://www.tutorialspoint.com/java/java_string_copyvalueof.htm
http://www.tutorialspoint.com/java/java_string_copyvalueof.htm
http://www.tutorialspoint.com/java/java_string_copyvalueof.htm
http://www.tutorialspoint.com/java/java_string_copyvalueof.htm
http://www.tutorialspoint.com/java/java_string_copyvalueof.htm
http://www.tutorialspoint.com/java/java_string_endswith.htm
http://www.tutorialspoint.com/java/java_string_endswith.htm
http://www.tutorialspoint.com/java/java_string_endswith.htm
http://www.tutorialspoint.com/java/java_string_endswith.htm
http://www.tutorialspoint.com/java/java_string_equals.htm
http://www.tutorialspoint.com/java/java_string_equals.htm
http://www.tutorialspoint.com/java/java_string_equals.htm
http://www.tutorialspoint.com/java/java_string_equals.htm
http://www.tutorialspoint.com/java/java_string_equals.htm
http://www.tutorialspoint.com/java/java_string_equalsignorecase.htm
http://www.tutorialspoint.com/java/java_string_equalsignorecase.htm
http://www.tutorialspoint.com/java/java_string_equalsignorecase.htm
http://www.tutorialspoint.com/java/java_string_equalsignorecase.htm
http://www.tutorialspoint.com/java/java_string_equalsignorecase.htm
http://www.tutorialspoint.com/java/java_string_equalsignorecase.htm

byte getBytes()

Encodes this String into a sequence of bytes using the

platform's default charset, storing the result into a new

byte array.

byte[] getBytes(String charsetName

Encodes this String into a sequence of bytes using the

named charset, storing the result into a new byte array.

int hashCode()

Returns a hash code for this string.

int indexOf(int ch)

Returns the index within this string of the first occurrence

of the specified character.

http://www.tutorialspoint.com/java/java_string_getbytes.htm
http://www.tutorialspoint.com/java/java_string_getbytes.htm
http://www.tutorialspoint.com/java/java_string_getbytes.htm
http://www.tutorialspoint.com/java/java_string_getbytes.htm
http://www.tutorialspoint.com/java/java_string_getbytes.htm
http://www.tutorialspoint.com/java/java_string_getbytes.htm
http://www.tutorialspoint.com/java/java_string_getbytes.htm
http://www.tutorialspoint.com/java/java_string_hashcode.htm
http://www.tutorialspoint.com/java/java_string_hashcode.htm
http://www.tutorialspoint.com/java/java_string_hashcode.htm
http://www.tutorialspoint.com/java/java_string_hashcode.htm
http://www.tutorialspoint.com/java/java_string_indexof.htm
http://www.tutorialspoint.com/java/java_string_indexof.htm
http://www.tutorialspoint.com/java/java_string_indexof.htm
http://www.tutorialspoint.com/java/java_string_indexof.htm
http://www.tutorialspoint.com/java/java_string_indexof.htm
http://www.tutorialspoint.com/java/java_string_indexof.htm
http://www.tutorialspoint.com/java/java_string_indexof.htm
http://www.tutorialspoint.com/java/java_string_indexof.htm
http://www.tutorialspoint.com/java/java_string_indexof.htm

int indexOf(int ch, int fromIndex)

Returns the index within this string of the first occurrence

of the specified character, starting the search at the

specified index.

int indexOf(String str)

Returns the index within this string of the first occurrence

of the specified substring.

int indexOf(String str, int fromIndex)

Returns the index within this string of the first occurrence

of the specified substring, starting at the specified index.

int lastIndexOf(int ch, int fromIndex)

Returns the index within this string of the last occurrence

of the specified character, searching backward starting at

the specified index.

http://www.tutorialspoint.com/java/java_string_indexof.htm
http://www.tutorialspoint.com/java/java_string_indexof.htm
http://www.tutorialspoint.com/java/java_string_indexof.htm
http://www.tutorialspoint.com/java/java_string_indexof.htm
http://www.tutorialspoint.com/java/java_string_indexof.htm
http://www.tutorialspoint.com/java/java_string_indexof.htm
http://www.tutorialspoint.com/java/java_string_indexof.htm
http://www.tutorialspoint.com/java/java_string_indexof.htm
http://www.tutorialspoint.com/java/java_string_indexof.htm
http://www.tutorialspoint.com/java/java_string_indexof.htm
http://www.tutorialspoint.com/java/java_string_indexof.htm
http://www.tutorialspoint.com/java/java_string_indexof.htm
http://www.tutorialspoint.com/java/java_string_indexof.htm
http://www.tutorialspoint.com/java/java_string_indexof.htm
http://www.tutorialspoint.com/java/java_string_indexof.htm
http://www.tutorialspoint.com/java/java_string_indexof.htm
http://www.tutorialspoint.com/java/java_string_indexof.htm
http://www.tutorialspoint.com/java/java_string_indexof.htm
http://www.tutorialspoint.com/java/java_string_indexof.htm
http://www.tutorialspoint.com/java/java_string_indexof.htm
http://www.tutorialspoint.com/java/java_string_indexof.htm
http://www.tutorialspoint.com/java/java_string_indexof.htm
http://www.tutorialspoint.com/java/java_string_indexof.htm
http://www.tutorialspoint.com/java/java_string_indexof.htm
http://www.tutorialspoint.com/java/java_string_indexof.htm
http://www.tutorialspoint.com/java/java_string_indexof.htm
http://www.tutorialspoint.com/java/java_string_indexof.htm
http://www.tutorialspoint.com/java/java_string_indexof.htm
http://www.tutorialspoint.com/java/java_string_lastindexof.htm
http://www.tutorialspoint.com/java/java_string_lastindexof.htm
http://www.tutorialspoint.com/java/java_string_lastindexof.htm
http://www.tutorialspoint.com/java/java_string_lastindexof.htm
http://www.tutorialspoint.com/java/java_string_lastindexof.htm
http://www.tutorialspoint.com/java/java_string_lastindexof.htm
http://www.tutorialspoint.com/java/java_string_lastindexof.htm
http://www.tutorialspoint.com/java/java_string_lastindexof.htm
http://www.tutorialspoint.com/java/java_string_lastindexof.htm
http://www.tutorialspoint.com/java/java_string_lastindexof.htm
http://www.tutorialspoint.com/java/java_string_lastindexof.htm
http://www.tutorialspoint.com/java/java_string_lastindexof.htm

int lastIndexOf(int ch, int fromIndex)

Returns the index within this string of the last occurrence

of the specified character, searching backward starting at

the specified index.

int lastIndexOf(String str)

Returns the index within this string of the rightmost

occurrence of the specified substring.

int lastIndexOf(String str, int fromIndex)

Returns the index within this string of the last occurrence

of the specified substring, searching backward starting at

the specified index.

int length()

Returns the length of this string.

http://www.tutorialspoint.com/java/java_string_lastindexof.htm
http://www.tutorialspoint.com/java/java_string_lastindexof.htm
http://www.tutorialspoint.com/java/java_string_lastindexof.htm
http://www.tutorialspoint.com/java/java_string_lastindexof.htm
http://www.tutorialspoint.com/java/java_string_lastindexof.htm
http://www.tutorialspoint.com/java/java_string_lastindexof.htm
http://www.tutorialspoint.com/java/java_string_lastindexof.htm
http://www.tutorialspoint.com/java/java_string_lastindexof.htm
http://www.tutorialspoint.com/java/java_string_lastindexof.htm
http://www.tutorialspoint.com/java/java_string_lastindexof.htm
http://www.tutorialspoint.com/java/java_string_lastindexof.htm
http://www.tutorialspoint.com/java/java_string_lastindexof.htm
http://www.tutorialspoint.com/java/java_string_lastindexof.htm
http://www.tutorialspoint.com/java/java_string_lastindexof.htm
http://www.tutorialspoint.com/java/java_string_lastindexof.htm
http://www.tutorialspoint.com/java/java_string_lastindexof.htm
http://www.tutorialspoint.com/java/java_string_lastindexof.htm
http://www.tutorialspoint.com/java/java_string_lastindexof.htm
http://www.tutorialspoint.com/java/java_string_lastindexof.htm
http://www.tutorialspoint.com/java/java_string_lastindexof.htm
http://www.tutorialspoint.com/java/java_string_lastindexof.htm
http://www.tutorialspoint.com/java/java_string_lastindexof.htm
http://www.tutorialspoint.com/java/java_string_lastindexof.htm
http://www.tutorialspoint.com/java/java_string_lastindexof.htm
http://www.tutorialspoint.com/java/java_string_lastindexof.htm
http://www.tutorialspoint.com/java/java_string_lastindexof.htm
http://www.tutorialspoint.com/java/java_string_lastindexof.htm
http://www.tutorialspoint.com/java/java_string_lastindexof.htm
http://www.tutorialspoint.com/java/java_string_length.htm
http://www.tutorialspoint.com/java/java_string_length.htm
http://www.tutorialspoint.com/java/java_string_length.htm

boolean matches(String regex) :-Tells whether or not this

string matches the given regular expression.

String replace(char oldChar, char newChar) :-Returns a new

string resulting from replacing all occurrences of oldChar in

this string with newChar.

String replaceAll(String regex, String replacement

Replaces each substring of this string that matches the

given regular expression with the given replacement.

String replaceFirst(String regex, String replacement)

Replaces the first substring of this string that matches the

given regular expression with the given replacement.

String[] split(String regex) :-Splits this string around

matches of the given regular expression.

http://www.tutorialspoint.com/java/java_string_matches.htm
http://www.tutorialspoint.com/java/java_string_matches.htm
http://www.tutorialspoint.com/java/java_string_matches.htm
http://www.tutorialspoint.com/java/java_string_matches.htm
http://www.tutorialspoint.com/java/java_string_matches.htm
http://www.tutorialspoint.com/java/java_string_replace.htm
http://www.tutorialspoint.com/java/java_string_replace.htm
http://www.tutorialspoint.com/java/java_string_replace.htm
http://www.tutorialspoint.com/java/java_string_replace.htm
http://www.tutorialspoint.com/java/java_string_replace.htm
http://www.tutorialspoint.com/java/java_string_replaceall.htm
http://www.tutorialspoint.com/java/java_string_replaceall.htm
http://www.tutorialspoint.com/java/java_string_replaceall.htm
http://www.tutorialspoint.com/java/java_string_replaceall.htm
http://www.tutorialspoint.com/java/java_string_replaceall.htm
http://www.tutorialspoint.com/java/java_string_replacefirst.htm
http://www.tutorialspoint.com/java/java_string_replacefirst.htm
http://www.tutorialspoint.com/java/java_string_replacefirst.htm
http://www.tutorialspoint.com/java/java_string_replacefirst.htm
http://www.tutorialspoint.com/java/java_string_replacefirst.htm
http://www.tutorialspoint.com/java/java_string_split.htm
http://www.tutorialspoint.com/java/java_string_split.htm
http://www.tutorialspoint.com/java/java_string_split.htm

boolean startsWith(String prefix) :-Tests if this string starts

with the specified prefix.

boolean startsWith(String prefix, int toffset) :-Tests if this

string starts with the specified prefix beginning a specified

index.

String substring(int beginIndex) :-Returns a new string that

is a substring of this string.

String substring(int beginIndex, int endIndex) :-Returns a

new string that is a substring of this string.

char[] toCharArray() :-Converts this string to a new

character array.

http://www.tutorialspoint.com/java/java_string_startswith.htm
http://www.tutorialspoint.com/java/java_string_startswith.htm
http://www.tutorialspoint.com/java/java_string_startswith.htm
http://www.tutorialspoint.com/java/java_string_startswith.htm
http://www.tutorialspoint.com/java/java_string_startswith.htm
http://www.tutorialspoint.com/java/java_string_startswith.htm
http://www.tutorialspoint.com/java/java_string_startswith.htm
http://www.tutorialspoint.com/java/java_string_startswith.htm
http://www.tutorialspoint.com/java/java_string_startswith.htm
http://www.tutorialspoint.com/java/java_string_startswith.htm
http://www.tutorialspoint.com/java/java_string_startswith.htm
http://www.tutorialspoint.com/java/java_string_startswith.htm
http://www.tutorialspoint.com/java/java_string_substring.htm
http://www.tutorialspoint.com/java/java_string_substring.htm
http://www.tutorialspoint.com/java/java_string_substring.htm
http://www.tutorialspoint.com/java/java_string_substring.htm
http://www.tutorialspoint.com/java/java_string_substring.htm
http://www.tutorialspoint.com/java/java_string_substring.htm
http://www.tutorialspoint.com/java/java_string_substring.htm
http://www.tutorialspoint.com/java/java_string_substring.htm
http://www.tutorialspoint.com/java/java_string_substring.htm
http://www.tutorialspoint.com/java/java_string_substring.htm
http://www.tutorialspoint.com/java/java_string_substring.htm
http://www.tutorialspoint.com/java/java_string_substring.htm
http://www.tutorialspoint.com/java/java_string_substring.htm
http://www.tutorialspoint.com/java/java_string_substring.htm
http://www.tutorialspoint.com/java/java_string_tochararray.htm
http://www.tutorialspoint.com/java/java_string_tochararray.htm
http://www.tutorialspoint.com/java/java_string_tochararray.htm

String toLowerCase() :-Converts all of the characters in this

String to lower case using the rules of the default locale.

String toString() :-This object (which is already a string!) is

itself returned.

String toUpperCase() :-Converts all of the characters in this

String to upper case using the rules of the default locale.

String trim() :-Returns a copy of the string, with leading

and trailing whitespace omitted.

static String valueOf([int][float][…….] xͿ :-Returns the

string representation of the passed data type argument.

Continue with more details about String later

http://www.tutorialspoint.com/java/java_string_tolowercase.htm
http://www.tutorialspoint.com/java/java_string_tolowercase.htm
http://www.tutorialspoint.com/java/java_string_tolowercase.htm
http://www.tutorialspoint.com/java/java_string_tostring.htm
http://www.tutorialspoint.com/java/java_string_tostring.htm
http://www.tutorialspoint.com/java/java_string_tostring.htm
http://www.tutorialspoint.com/java/java_string_touppercase.htm
http://www.tutorialspoint.com/java/java_string_touppercase.htm
http://www.tutorialspoint.com/java/java_string_touppercase.htm
http://www.tutorialspoint.com/java/java_string_trim.htm
http://www.tutorialspoint.com/java/java_string_valueof.htm
http://www.tutorialspoint.com/java/java_string_valueof.htm
http://www.tutorialspoint.com/java/java_string_valueof.htm
http://www.tutorialspoint.com/java/java_string_valueof.htm
http://www.tutorialspoint.com/java/java_string_valueof.htm

Inheritance

 • Inheritance can be defined as the process where

one object acquires the properties of another.

• Inheritance is a mechanism in which one object

acquires all the properties and behaviours of parent

object.

• The idea behind inheritance is that you can create

new classes that are built upon existing classes.

• When you inherit from an existing class, you reuse

(or inherit) methods and fields.

• Inheritance represents the IS-A relationship.

• extends keyword is used to achieve inheritance.

Inheritance Example

Animal is the superclass of Mammal class.

Animal is the superclass of Reptile class.

Mammal and Reptile are subclasses of Animal class.

Dog is the subclass of both Mammal and Animal classes.

IS-A Relationship

Mammal IS-A Animal

Reptile IS-A Animal

Dog IS-A Mammal

Hence : Dog IS-A Animal as well

Instanceof Operator

• The instanceof operator compares an object to a

specified type.

• You can use it to test if an object is an instance of a

class, an instance of a subclass, or an instance of a

class that implements a particular interface.

• The instanceof operator is also known as type

comparison operator because it compares the

instance with type.

• It returns either true or false.

• If we apply the instanceof operator with any

variable that have null value, it returns false.

Instanceof Operator Example

Types of Inheritance
• There exists basically three types of inheritance.

• Single Inheritance

• Multilevel inheritance

• Multiple inheritance

• Hierarchical inheritance

 In single inheritance, one class extends one class only.

 In multilevel inheritance, the ladder of single
inheritance increases.
 In multiple inheritance, one class directly extends
more than one class.
In hierarchical inheritance one class is extended by
more than one class.

http://way2java.com/oops-concepts/inheritance/

Single Inheritance

Multilevel Inheritance

Multilevel Inheritance

Multiple Inheritance

• In multiple inheritance, one class extends multiple

classes. Java does not support multiple

inheritance but C++ supports. The above program

can be modified to illustrate multiple inheritance.

The following program does not work.

class Aves { }

class Bird { }

class Parrot extends Aves, Bird { }

Note:-Java supports multiple inheritance partially

through interfaces.

Hierarchical Inheritance

Disadvantages of Inheritance

• Both classes (super and subclasses) are tightly-

coupled.

• As they are tightly coupled (binded each other

strongly with extends keyword), they cannot work

independently of each other.

• Changing the code in super class method also

affects the subclass functionality.

• If super class method is deleted, the code may not

work as subclass may call the super class method

with super keyword. Now subclass method behaves

independently.-

Aggregation In Java

• If a class have an entity reference, it is known as

Aggregation. Aggregation represents HAS-A

relationship

• Consider a situation, Employee object contains

many informations such as id, name, emailld etc. It

contains one more object named address, which

contains its own informations such as city, state,

country, zipcode etc. as given below.

Aggregation In Java

class Employee{

 int id;

 String name;

 Address address;//Address is a class

 }

In such case, Employee has an entity reference

address, so relationship is Employee HAS-A address.

Why use Aggregation?

Ans:-For Code Reusability.

When use Aggregation?

♦ Code reuse is also best achieved by aggregation

when there is no is-a relationship.

♦ Inheritance should be used only if the relationship

is-a is maintained throughout the lifetime of the

objects involved; otherwise, aggregation is the best

choice.

Overriding
• In the previous chapter, we talked about super

classes and sub classes.

• If a class inherits a method from its super class,

then there is a chance to override the method

provided that it is not marked final.

• The benefit of overriding is: ability to define a

behavior that's specific to the subclass type which

means a subclass can implement a parent class

method based on its requirement.

• In object-oriented terms, overriding means to

override the functionality of an existing method.

Rules for method overriding:

 • The argument list should be exactly the same as

that of the overridden method.

• The return type should be the same or a subtype of

the return type declared in the original overridden

method in the superclass.

• The access level cannot be more restrictive than the

overridden method's access level. For example: if

the superclass method is declared public then the

overridding method in the sub class cannot be

either private or protected.

• Instance methods can be overridden only if they are

inherited by the subclass.

Rules for method overriding:

 • A method declared final cannot be overridden.

• A method declared static cannot be overridden but

can be re-declared.

• If a method cannot be inherited, then it cannot be

overridden.

• A subclass within the same package as the

instance's superclass can override any superclass

method that is not declared private or final.

• A subclass in a different package can only override

the non-final methods declared public or protected.

Rules for method overriding:

 • An overriding method can throw any uncheck

exceptions, regardless of whether the overridden

method throws exceptions or not.

• However the overriding method should not throw

checked exceptions that are new or broader than

the ones declared by the overridden method. The

overriding method can throw narrower or fewer

exceptions than the overridden method.

• Constructors cannot be overridden.

Questions
1) Can we override static method?

 No, static method cannot be overridden. It can be

proved by runtime polymorphism so we will learn it

later.

2) Why we cannot override static method?

 because static method is bound with class whereas

instance method is bound with object. Static

belongs to class area and instance belongs to heap

area.

Compare Overloading and Overriding

Method Overloading Method Overriding

Method overloading is used to

increase the readability of the

program.

Method overriding is used to

provide the specific

implementation

of the method that is already

provided by its super class.

method overlaoding is performed

within a class.

Method overriding occurs in two

classes that have IS-A

relationship.

In case of method overloading

parameter must be different.

In case of method overriding

parameter must be same.

Applying access modifier with method

overriding

• If you are overriding any method, overriden

method (i.e. declared in subclass) must not be

more restrictive.

Access Levels are in sequence of

1)Private

2)Default

3)Protected

4)Public

Example

Cont.. Next page

Covariant Return Type
• The covariant return type specifies that the return

type may vary in the same direction as the subclass.

• Before Java5, it was not possible to override any

method by changing the return type.

• But now, since Java5,it is possible to override

method by changing the return type if subclass

overrides any method whose return type is Non-

Primitive but it changes its return type to subclass

type.

Let's take a simple example:

super keyword
• The super is a reference variable that is used to refer

immediate parent class object.

• Whenever you create the instance of subclass, an
instance of parent class is created implicitely because it
is referred by super reference variable.

 Usage of super Keyword:-

 1. super is used to refer immediate parent class
instance variable.

 2. super() is used to invoke immediate parent class
constructor.

 3. super is used to invoke immediate parent class
method.

120

Restricting Inheritance

Parent

Child

Inherited

capability

121

Final Members: A way for Preventing

Overriding of Members in Subclasses

• All methods and variables can be overridden
by default in subclasses.

• This can be prevented by declaring them as
fiŶal usiŶg the keyǁoƌd ͞fiŶal͟ as a ŵodifieƌ.
For example:

– final int marks = 100;

– final void display();

• This ensures that functionality defined in this
method cannot be altered any. Similarly, the
value of a final variable cannot be altered.

122

Final Classes: A way for Preventing Classes

being extended

• We can prevent an inheritance of classes by other
classes by declaring them as final classes.

• This is achieved in Java by using the keyword final as
follows:

final class Marks

{ // members

}

final class Student extends Person

{ // members

}

• Any attempt to inherit these classes will cause an
error.

123

Abstract Classes

• When ǁe defiŶe a Đlass to ďe ͞fiŶal ,͟ it ĐaŶŶot ďe
extended. In certain situation, we want to
properties of classes to be always extended and
used. Such classes are called Abstract Classes.

• An Abstract class is a conceptual class.

• An Abstract class cannot be instantiated – objects
cannot be created.

• Abstract classes provides a common root for a
group of classes, nicely tied together in a package:

124

Abstract Class Syntax
abstract class ClassName

{

...

…

abstract Type MethodName1();

…

…

Type Method2()

{

 // method body

}

}

• When a class contains one or more abstract methods, it should be
declared as abstract class.

• The abstract methods of an abstract class must be defined in its
subclass.

• We cannot declare abstract constructors or abstract static methods.

125

Abstract Class -Example

• Shape is a abstract class.

Shape

Circle Rectangle

126

The Shape Abstract Class

• Is the following statement valid?

– Shape s = new Shape();

• No. It is illegal because the Shape class is an
abstract class, which cannot be instantiated to
create its objects.

public abstract class Shape {

 public abstract double area();

 public void move() { // non-abstract

method

 // implementation

 }

}

127

Abstract Classes

public Circle extends Shape {

 protected double r;

 protected static final double PI =3.1415926535;

 public Circle() { r = 1.0;)

 public double area() { return PI * r * r; }

…

}

public Rectangle extends Shape {

 protected double w, h;

 public Rectangle() { w = 0.0; h=0.0; }

 public double area() { return w * h; }

}

128

Abstract Classes Properties

• A class with one or more abstract methods is
automatically abstract and it cannot be instantiated.

• A class declared abstract, even with no abstract
methods can not be instantiated.

• A subclass of an abstract class can be instantiated if
it overrides all abstract methods by implementation
them.

• A subclass that does not implement all of the
superclass abstract methods is itself abstract; and it
cannot be instantiated.

129

Summary
• If you do not want (properties of) your class to be

extended or inherited by other classes, define it as a
final class.

– Jaǀa suppoƌts this is thƌough the keyǁoƌd ͞fiŶal .͟
– This is applied to classes.

• You can also apply the final to only methods if you do
not want anyone to override them.

• If you want your class (properties/methods) to be
extended by all those who want to use, then define it as
an abstract class or define one or more of its methods
as abstract methods.

– Jaǀa suppoƌts this is thƌough the keyǁoƌd ͞aďstƌaĐt .͟
– This is applied to methods only.

– Subclasses should implement abstract methods;
otherwise, they cannot be instantiated.

Interface

• Since we have a good understanding of

the extends keyword let us look into how

the implements keyword is used to get the IS-A

relationship.

• The implements keyword is used by classes by

inherit from interfaces. Interfaces can never be

extended by the classes.

• An interface in the Java programming language is

an abstract type that is used to specify

an interface that classes must implement.

Interface

• Interface is a conceptual entity similar to a

Abstract class.

• Can contain only constants (final variables) and

abstract method (no implementation) - Different

from Abstract classes.

• Use when a number of classes share a common

interface.

• Each class should implement the interface.

Interface

• An interface is basically a kind of class—it contains

methods and variables, but they have to be only

abstract classes and final fields/variables.

• Therefore, it is the responsibility of the class that

implements an interface to supply the code for

methods.

• A class can implement any number of interfaces,

but cannot extend more than one class at a time.

• Therefore, interfaces are considered as an informal

way of realising multiple inheritance in Java.

Interface Example

speak()

Politician Priest

<<Interface>>

Speaker

speak() speak()

Lecturer

speak()

Interfaces Definition

• Syntax (appears like abstract class):

• Example:

interface InterfaceName {

 // Constant/Final Variable Declaration

 // Methods Declaration – only method body

}

interface Speaker {

 public void speak();

}

135

Implementing Interfaces

• Interfaces are used like super-classes who

properties are inherited by classes. This is achieved

by creating a class that implements the given

interface as follows:

class ClassName implements InterfaceName [, InterfaceName2, …]

{

 // Body of Class

}

136

Implementing Interfaces Example
class Politician implements Speaker {

 public void speak(){

 System.out.println(“Talk politics”);
 }

}

class Priest implements Speaker {

 public void speak(){

 System.out.println(“Religious Talks”);
 }

}
class Lecturer implements Speaker {

 public void speak(){

 System.out.println(“Talks Object Oriented Design and

Programming!”);
 }

}

137

Extending Interfaces

• Like classes, interfaces can also be extended. The new sub-

interface will inherit all the members of the superinterface

in the manner similar to classes. This is achieved by using

the keyword extends as follows:

interface InterfaceName2 extends InterfaceName1 {

 // Body of InterfaceName2

}

138

Inheritance and Interface

Implementation

• A general form of interface implementation:

• This shows a class can extended another class while
implementing one or more interfaces. It appears like a
multiple inheritance (if we consider interfaces as special
kind of classes with certain restrictions or special features).

class ClassName extends SuperClass implements

InterfaceName [, InterfaceName2, …]

{

 // Body of Class

}

Interface Cont..

• Interfaces are declared using the interface keyword.

• Interface may only contain method signature and

constant declarations (variable declarations that are

declared to be both static and final).

• An interface may never contain method definitions.

• Interfaces cannot be instantiated, but rather are

implemented.

• A class that implements an interface must

implement all of the methods described in the

interface, or be an abstract class.

http://en.wikipedia.org/wiki/Java_keywords
http://en.wikipedia.org/wiki/Method_signature
http://en.wikipedia.org/wiki/Static_variable
http://en.wikipedia.org/wiki/Final_\(Java\)

Interface Cont..

• Object references in Java may be specified to be of

an interface type.

• One benefit of using interfaces is that they

simulate multiple inheritance.

• All classes in Java must have exactly one base class

because multiple inheritance of classes is not

allowed.

• A Java class may implement n number of interface.

• Interface may extends n number of interface.

http://en.wikipedia.org/wiki/Multiple_inheritance
http://en.wikipedia.org/wiki/Base_class
http://en.wikipedia.org/wiki/Multiple_inheritance

Interface Example

Interface Example

Comparable Interface

1. Provides an interface for comparing any two objects of

same class.

2. General Form :

 public interface Comparable

 {

 int compareTo(Object other);

 }

Note : other parameter should be type casted to the class type

implementing Comparable interface

3. Collections. sort method can sort objects of any class that implements

comparable interface.

4. By implementing this interface , programmers can implement the logic

for comparing two objects of same class for less than, greater than or

equal to.

 public interface Comparable<T>

 {

 int compareTo(<T> other);

 }

Examples for Implementation

class BOX Implements Comparable

{

………………………………………

………………………………………

………………………………………

public int compareTo(Object other)

{

BOX box = (BOX) other;

......Logic for coŵparisoŶ ….

}

………………………………….
}

class Student Implements Comparable

{

………………………………………

………………………………………

………………………………………

public int compareTo(Object other)

{

Student std = (Student) other;

......Logic for coŵparisoŶ ….

}

………………………………….
}

Examples for Implementation

class BOX Implements Comparable<BOX>

{

………………………………………

………………………………………

………………………………………

public int compareTo(BOX other)

{

......Logic for coŵparisoŶ ….

}

………………………………….
}

class Student Implements Comparable<Student>

{

………………………………………

………………………………………

………………………………………

public int compareTo(Student other)

{

......Logic for coŵparisoŶ ….

}

………………………………….
}

Examples
class BOX implements Comparable

{

private double length;

private double width;

private double height;

BOX(double l,double b,double h)

{

length=l;width=b;height=h;

}

public double getLength() { return length;}

public double getWidth() { return width;}

public double getHeight() { return height;}

public double getArea()

{

return 2*(length*width + width*height+height*length);

}

public double getVolume()

{

return length*width*height;

}

Unparametrized Comparable

public int compareTo(Object other)

{

BOX b1 =(BOX) other;

if(this.getVolume() > b1.getVolume())

return 1;

if(this.getVolume() < b1.getVolume())

return -1;

return 0;

}

public String toString()

{

returŶ ͞LeŶgth:͟+leŶgth+͟ Width :͟+ǁidth +͟ Height :͟+height;
}

} // End of BOX class

import java.util.*;

class ComparableTest

{

public static void main(String[] args)

{

BOX[] box = new BOX[5];

box[0] = new BOX(10,8,6);

box[1] = new BOX(5,10,5);

box[2] = new BOX(8,8,8);

box[3] = new BOX(10,20,30);

box[4] = new BOX(1,2,3);

Arrays.sort(box);

for(int i=0;i<box.length;i++)

System.out.println(box[i]);

}

} // End of class

Import java.util.*;

class ComparableTest

{

public static void main(String[] args)

{

ArrayList box = new ArrayList();

box.add(new BOX(10,8,6));

box.add(new BOX(5,10,5));

box.add(new BOX(8,8,8));

box.add(new BOX(10,20,30));

box.add(new BOX(1,2,3));

Collections.sort(box);

Iterator itr = ar.iterator();

while(itr.hasNext())

{

BOX b =(BOX) itr.next();

System.out.println(b);

}

}

}// End of class

Problems With Comparable Interface

• Method int compareTo(Object obj) needs to

be included in the base class itself.

• We can include only single ordering logic.

• Different order requires logic to be included

and requires changes in the base class itself.

• Each type we need different order we need to

change the code itself.

import java.util.*;

class Student implements Comparable

{

private String name;

private String idno;

private int age;

private String city;

……………………..
………………………

public int compareTo(Object other)

{

Student std = (Student) other;

return this.name.compareTo(other.name);

}

public String toString()

{

ReturŶ ͞Naŵe:͟+Ŷaŵe+͟Id
No:͟+idŶo+ A͟ge:͟+age;
}

} // End of class

Student[] students = new

Student[10];

……………………………

…………………………

………………………………

Arrays.sort(students);
for(int i=0 ; i<students.length;i++)

System.out.println(students[i]);

OUTPUT List sorted by Name

import java.util.*;

class Student implements Comparable

{

private String name;

private String idno;

private int age;

private String city;

……………………..
………………………

public int compareTo(Object other)

{

Student std = (Student) other;

return this.idno.compareTo(other.idno);

}

public String toString()

{

ReturŶ ͞Naŵe:͟+Ŷaŵe+͟Id
No:͟+idŶo+ A͟ge:͟+age;
}

} // End of class

Student[] students = new

Student[10];

……………………………

…………………………

………………………………

Arrays.sort(students);
for(int i=0 ; i<students.length;i++)

System.out.println(students[i]);

OUTPUT List sorted by IdNo

Comparator Interface

• Allows two objects to compare explicitly.

• Syntax :

public interface Comparator

{

int compare(Object O1, Object O2);

}

public interface Comparator<T>

{

int compare(T O1, T O2);

}

• Does not require change in the base class.

• We can define as many comparator classes for the base class.

• Each Comparator class implements Comparator interface and provides
different logic for comparisons of objects.

• But as we are passing both parameters explicitly, we have to type cast
both Object types to their base type before implementing the logic OR
Use the second form

Unparametrized Comparator

Parametrized Comparator

Student

class Student

{

private String name;

private String idno;

private int age;

private String city;

…………………..

…………………..

Comparator

studentbyname studentbyidno

studentbynameidno studentbynameage

studentbyage

class studentbyname implements comparator

{

public int compare(Object o1,Object o2)

{

Student s1 = (Student) o1;

Student s2 = (Student) o2;

return s1.getName().compareTo(s2.getName());

}

}

class studentbyidno implements comparator

{

public int compare(Object o1,Object o2)

{

Student s1 = (Student) o1;

Student s2 = (Student) o2;

return s1.getIdNo().compareTo(s2.getIdNo());

}

}

class studentbyage implements comparator

{

public int compare(Object o1,Object o2)

{

Student s1 = (Student) o1;

Student s2 = (Student) o2;

if(s1.getAge() > s2.getAge()) return 1;

if(s1.getAge() < s2.getAge()) return -1;

return 0;

}

}
class studentbynameidno implements comparator

{

public int compare(Object o1,Object o2)

{

Student s1 = (Student) o1;

Student s2 = (Student) o2;

if(s1.getName().compareTo(s2.getName()) == 0)

return s1.getIdNo().compareTo(s2.getIdNo());

else

return s1.getName().compareTo(s2.getName());

} }

class studentbynameage implements comparator

{

public int compare(Object o1,Object o2)

{

Student s1 = (Student) o1;

Student s2 = (Student) o2;

if(s1.getName().compareTo(s2.getName()) == 0)

return s1.getAge() – s2.getAge();

else

return s1.getName().compareTo(s2.getName());

}

}

Import java.util.*;

class comparatorTest

{

public static void main(String args[])

{

Student[] students = new Student[5];

“tudeŶt[Ϭ] = Ŷeǁ “tudeŶt;͞JohŶ ,͟͟ ϮϬϬϬAϭPsϮϯϰ ,͟Ϯϯ,͟ PilaŶi͟Ϳ;
“tudeŶt[ϭ] = Ŷeǁ “tudeŶt;͞Meera ,͟͟ ϮϬϬϭAϭPsϮϯϰ ,͟Ϯϯ,͟ PilaŶi͟Ϳ;
“tudeŶt[Ϯ] = Ŷeǁ “tudeŶt;͞Kaŵal ,͟͟ ϮϬϬϭAϭPsϯϰϰ ,͟Ϯϯ,͟ PilaŶi͟Ϳ;
“tudeŶt[ϯ] = Ŷeǁ “tudeŶt;͞Raŵ ,͟͟ ϮϬϬϬAϮPsϲϰϰ ,͟Ϯϯ,͟ PilaŶi͟Ϳ;
“tudeŶt[ϰ] = Ŷeǁ “tudeŶt;͞“haŵ ,͟͟ ϮϬϬϬAϳPsϱϰϯ ,͟Ϯϯ,͟ PilaŶi͟Ϳ;

// Sort By Name

Comparator c1 = new studentbyname();

Arrays.sort(students,c1);

for(int i=0;i<students.length;i++)

System.out.println(students[i]);

// Sort By Idno

c1 = new studentbyidno();

Arrays.sort(students,c1);

for(int i=0;i<students.length;i++)

System.out.println(students[i]);

// Sort By Age

c1 = new studentbyage();

Arrays.sort(students,c1);

for(int i=0;i<students.length;i++)

System.out.println(students[i]);

// Sort by Name & Idno

c1 = new studentbynameidno();

Arrays.sort(students,c1);

for(int i=0;i<students.length;i++)

System.out.println(students[i]);

// Sort by Name & Age

c1 = new studentbynameage();

Arrays.sort(students,c1);

for(int i=0;i<students.length;i++)

System.out.println(students[i]);

} // End of Main

} // End of test class.

import java.util.*;

class A

{ int a;

}

class ctest

{

public static void main(String args[])

{

String[] names = {"OOP","BITS","PILANI"};

Arrays.sort(names);

int[] data = { 10,-45,87,0,20,21 };

Arrays.sort(data);

A[] arr = new A[5];
arr[0] = new A();

arr[1] = new A();

arr[2] = new A();

arr[3] = new A();

arr[4] = new A();

Arrays.sort(arr);
} }

Ok As String class

implements Comparable

Exception in thread "main" java.lang.ClassCastException:

A

 at java.util.Arrays.mergeSort(Arrays.java:1156)

 at java.util.Arrays.sort(Arrays.java:1080)

 at ctest.main(ctest.java:21)

Ok As Integer class

implements Comparable

NOT Ok as A class does

not implements

Comparable.

import java.util.*;

class A implements Comparable

{

int a;

public int compareTo(Object other)

{

A a1 = (A) other;
if(this.a == a1.a) return 0;

if(this.a < a1.a) return -1;

return 1;

}

}

class ctest

{

public static void main(String args[])

{

String[] names = {"OOP","BITS","PILANI"};

Arrays.sort(names);
int[] data = { 10,-45,87,0,20,21 };

Arrays.sort(data);

A[] arr = new A[5];
arr[0] = new A();

arr[1] = new A();

arr[2] = new A();

arr[3] = new A();

arr[4] = new A();

Arrays.sort(arr);
}

}

Unparametrized Comparator

Unparametrized Comparable

Will Work

Will Work

Will Work

Type cast Object type to Base

Type Before use

import java.util.*;

class A implements Comparable<A>

{

int a;

public int compareTo(A other)

{

// A a1 = (A) other; //No need of cast

if(this.a == other.a) return 0;

if(this.a < other.a) return -1;

return 1;

}

}

class ctest

{

public static void main(String args[])

{

String[] names = {"OOP","BITS","PILANI"};

Arrays.sort(names);
int[] data = { 10,-45,87,0,20,21 };

Arrays.sort(data);

A[] arr = new A[5];
arr[0] = new A();

arr[1] = new A();

arr[2] = new A();

arr[3] = new A();

arr[4] = new A();

Arrays.sort(arr);
}

}

Parametrized Comparator

Parametrized Comparable

Will Work

Will Work

Will Work

import java.util.*;

class BOX implements Comparable<BOX>

{

private double l,b,h;

// Overloaded Constructors

BOX(double a)

{ l=b=h=a;

}

BOX(double l,double b,double h)

{ this.l=l; this.b=b; this.h=h;

}

// Acessor Methods

public double getL()

{ return l;

}

public double getB()

{ return b;

}

public double getH()

{ return h;

}
CoŶt….

Parametrized
Comparable of
type BOX

// area() Volume() Methods

double area()

{

return 2*(l*b+b*h+h*l);

}

double volume()

{

return l*b*h;

}

// isEquals() method

boolean isEqual(BOX other)

{

if(this.area() == other.area()) return true;

return false;

/* OR

if(area() == other.area()) return true

return false;

*/

}

static boolean isEquals(BOX b1, BOX b2)

{

if(b1.area() == b2.area()) return true;

return false;

}

// compareTo method

public int compareTo(BOX other)

{

if(area() > other.area()) return 1;

if(area() < other.area()) return -1;

return 0;

}

public String toString()

{

String s1="length:"+l;

String s2="width:"+b;

String s3="area:"+h;

String s4="Area:"+area();

String s5="Volume:"+volume();

return s1+s2+s3+s4+s5;

}

} // End of class BOX

class comparableTest10

{

public static void main(String args[])

{

ArrayList<BOX> boxes = new ArrayList<BOX>();

boxes.add(new BOX(10));

boxes.add(new BOX(20));

boxes.add(new BOX(10,6,8));

boxes.add(new BOX(4,6,10));

boxes.add(new BOX(10,12,14));

Iterator itr = boxes.iterator();

while(itr.hasNext())

System.out.println((BOX)itr.next());

Collections.sort(boxes);

Iterator itr1 = boxes.iterator();

while(itr1.hasNext())

System.out.println((BOX)itr1.next());

}

}

Converting a Class To an Interface Type

1. Interface acts as a super class for the implementation classes.

2. A reference variable belonging to type interface can point to

any of the object of the classes implementing the interface.

A B C

X

<< classes >>

<< interface >>

A a1 = new A();

X x1 = a1;

Class to interface type Conversion

Converting an Interface to a class Type

A B C

X

<< classes >>

<< interface >> X x1 = new A();

A a1 = (A) x1;

X x1 = new B();

B b1 = (B) x1;

X x1 = new C();

C c1 = (C) x1;

Interface to Class type Conversion

Comparator Example

• Supply comparators for BOX class so that BOX[] OR ArrayList<BOX>

can be sorted by any of the following orders:

1. Sort By Length Either in Ascending or descending order

2. Sort By Width Either in Ascending or descending order

3. Sort By Height Either in Ascending or descending order

4. Sort By Area Either in Ascending or descending order

5. Sort By Volume Either in Ascending or descending order

class BOX
{
……………….instance fields
………………instance methods
……………………
}

BOX is base class whose references stored either in Arrays or in
Any Collection class such as ArrayList, Vector or LinkedList Needs
to be sorted

Comparator<BOX>

SORTBOXBYLENGTH SORTBOXBYWIDTH SORTBOXBYHEIGHT

SORTBOXBYAREA SORTBOXBYVOLUME

BOX class does not
implement any comparable
or comparatorinterface

Comparator
Classes

import java.util.*;

class BOX

{

private double l,b,h;

// Overloaded Constructors

BOX(double a)

{ l=b=h=a;

}

BOX(double l,double b,double h)

{

this.l=l;

this.b=b;

this.h=h;

}

// Acessor Methods

public double getL()

{ return l;

}

public double getB()

{ return b;

}

public double getH()

{ return h;

}

// area() Volume() Methods

double area()

{

return 2*(l*b+b*h+h*l);

}

double volume()

{

return l*b*h;

}

// isEquals() method

boolean isEqual(BOX other)

{

if(this.area() == other.area()) return true;

return false;

/* OR

if(area() == other.area()) return true

return false;

*/

}

CoŶt …..

static boolean isEquals(BOX b1, BOX b2)

{

if(b1.area() == b2.area()) return true;

return false;

}

public String toString()

{

String s1="length:"+l;

String s2="width:"+b;

String s3="area:"+h;

String s4="Area:"+area();

String s5="Volume:"+volume();

return s1+s2+s3+s4+s5;

}

} // End of class BOX

NOTE :

BOX class is base class
whose references needs to
be sorted. It does not
implement either
comparable or comparator
class

CoŶt …..

class SORTBOXBYLENGTH implements Comparator<BOX>

{

private int order; // Defines Order of sorting 1 for Ascending -1 for Descending

SORTBOXBYLENGTH(boolean isAscending)

{

if(isAscending)

order =1;

else

order =-1;

}

public int compare(BOX b1,BOX b2)

{

if(b1.getL() > b2.getL()) return 1*order;

if(b1.getL() < b2.getL()) return -1*order;

return 0;

}

}// End of class

// Comparator class for Sorting by BOX references By length

class SORTBOXBYWIDTH implements Comparator<BOX>
{

private int order;

SORTBOXBYWIDTH(boolean isAscending)

{

if(isAscending)

order =1;

else

order =-1;

}

public int compare(BOX b1,BOX b2)

{

if(b1.getB() > b2.getB()) return 1*order;
if(b1.getB() < b2.getB()) return -1*order;
return 0;

}

} // End of class

// Comparator class for Sorting by BOX references By Width

class SORTBOXBYHEIGHT implements Comparator<BOX>
{

private int order;

SORTBOXBYHEIGHT(boolean isAscending)

{

if(isAscending)

order =1;

else

order =-1;

}

public int compare(BOX b1,BOX b2)

{

if(b1.getH() > b2.getH()) return 1*order;
if(b1.getH() < b2.getH()) return -1*order;
return 0;

}

} // End of class

// Comparator class for Sorting by BOX references By Height

class SORTBOXBYAREA implements Comparator<BOX>
{

private int order;

SORTBOXBYAREA(boolean isAscending)

{

if(isAscending)

order =1;

else

order =-1;

}

public int compare(BOX b1,BOX b2)

{

if(b1.area() > b2.area()) return 1*order;
if(b1.area() < b2.area()) return -1*order;
return 0;

}

} // End of class

// Comparator class for Sorting by BOX references By Area

class SORTBOXBYVOLUME implements Comparator<BOX>
{

private int order;

SORTBOXBYVOLUME(boolean isAscending)

{

if(isAscending)

order =1;

else

order =-1;

}

public int compare(BOX b1,BOX b2)

{

if(b1.volume() > b2.volume()) return 1*order;
if(b1.volume() < b2.volume()) return -1*order;
return 0;
}

} // End of class

// Comparator class for Sorting by BOX references By Volume

class comparatorTest

{

public static void main(String args[]) {

ArrayList<BOX> boxes = new ArrayList<BOX>();
boxes.add(new BOX(10));

boxes.add(new BOX(20));

boxes.add(new BOX(10,6,8));

boxes.add(new BOX(4,6,10));

boxes.add(new BOX(10,12,14));

// SORT BY LENTH ORDER:Ascending
Comparator<BOX> c1 = new SORTBOXBYLENGTH(true);
Collections.sort(boxes,c1);
for(int i=0;i<boxes.size();i++)

System.out.println(boxes.get(i));

System.out.println("");

// SORT BY LENTH ORDER:Descending
c1 = new SORTBOXBYLENGTH(false);
Collections.sort(boxes,c1);
for(int i=0;i<boxes.size();i++)

System.out.println(boxes.get(i));

System.out.println("");

// SORT BY Volume ORDER:Ascending
c1 = new SORTBOXBYVOLUME(true);
Collections.sort(boxes,c1);
for(int i=0;i<boxes.size();i++)

System.out.println(boxes.get(i));

System.out.println("");

// SORT BY Volume ORDER:Descending

c1 = new SORTBOXBYVOLUME(false);
Collections.sort(boxes,c1);
for(int i=0;i<boxes.size();i++)

System.out.println(boxes.get(i));

System.out.println("");

}

} // End of Main class

Exercise 1

• Suppose C is a class that implements interfaces

I and J. Which of the following Requires a type

cast?

C c = ……?
I i = …..?
J j = …..?

1. c = i

2. j = c

3. i = j
C

I J

<< class>>

<< interfaces>>

First c = (C) I

Third I = (I) j

Exercise 2

• Suppose C is a class that implements interfaces

I and J. Which of the following will throw an

Exception?

C c = new C()

1. I i = c;

2. J j = (J) i;

3. C d = (C) i;

C

I J

<< class>>

<< interfaces>>

Second

Exercise 3

• Suppose the class Sandwich implements Editable

interface. Which if the following statements are

legal?

1. Sandwich sub = new Sandwich();

2. Editable e = sub;

3. sub = e

4. sub = (Sandwich) e;

OK

OK

OK

Illegal

Polymorphism

• Polymorphism is the ability of an object to take on

many forms.

• The most common use of polymorphism in OOP

occurs when a parent class reference is used to

refer to a child class object.

• Any Java object that can pass more than one IS-A

test is considered to be polymorphic.

• In Java, all Java objects are polymorphic since any

object will pass the IS-A test for their own type and

for the class Object.

Polymorphism

• It is important to know that the only possible way to

access an object is through a reference variable.

• A reference variable can be of only one type.

• Once declared, the type of a reference variable

cannot be changed.

• The reference variable can be reassigned to other

objects provided that it is not declared final.

• The type of the reference variable would determine

the methods that it can invoke on the object.

Polymorphism

• A reference variable can refer to any object of its

declared type or any subtype of its declared type.

• A reference variable can be declared as a class or

interface type.

 refer example from next slide.

Polymorphism

Method Overriding Cont..
1. Sub class can override the methods defined by the super

class.

2. Overridden Methods in the sub classes should have same
name, same signature , same return type and may have
either the same or higher scope than super class method.

3. Java implements Run Time Polymorphism/ Dynamic Method
Dispatch by Method Overriding. [Late Binding]

4. Call to Overridden Methods is Resolved at Run Time.

5. Call to a overridden method is not decided by the type of
reference variable Rather by the type of the object where
reference variable is pointing.

6. While Overriding a Method, the sub class should assign
either same or higher access level than super class method.

EXAMPLE METHOD OVERRIDING class A

{

void show()

{

System.out.println("Hello This is show() in A");

}// End of show() Method

} // End of class A

class B extends A

{

void show()

{

System.out.println("Hello This is show() in B");

}// End of show() Method

} // End of class B class override

{

public static void main(String args[])

{

// super class reference variable

// can point to sub class object

A a1 = new A();

a1.show();

a1 = new B();

a1.show();

}

}

B class overrides show() method from

super class A

Call to show()

of A class

Call to show()

of B class

class A

{

void show(int a)

{

System.out.println("Hello This is show()

in A");

}

}

class B extends A

{

void show()

{

System.out.println("Hello This is show()

in B");

}

}

class override1

{

public static void main(String args[])

{

/*

A a1 = new B();

a1.show(); */

A a1 = new A();

a1.show(10);

B b1 = new B();

b1.show(10);

b1.show(); }

OUTPUT

Hello This is show() in A

Hello This is show() in A

Hello This is show() in B

Is this Method

Overriding

NO

Dynamic Method Dispatch

1. Super class reference variable can refer to a sub class object.

2. Super class variable if refers to sub class object can call only

overridden methods.

3. Call to an overridden method is decided by the type of object

referred to.

A

B C D

A a1 = new B();

a1.show(); // call to show() of B

a1 = new C();

a1.show(); // call to show() of C

a1 = new D();

a1.show(); // call to show() of D

 Assume show() Method is

Overridden by sub classes

class A
{
void show()
{
System.out.println("Hello This is
show() in A");
}
}
class B extends A
{
void show()
{
System.out.println("Hello This is
show() in B");
}
}

class C extends A

{

void show()

{

System.out.println("Hello This

is show() in C");

}

}

class D extends A

{

void show()

{

System.out.println("Hello This

is show() in D");

}

}

DYNAMIC METHOD DISPATCH

CONTINUED…..

class override2

{

public static void main(String

args[])

{

A a1 = new A();

a1.show();

a1 = new B();

a1.show();

a1 = new C();

a1.show();

a1 = new D();

a1.show();

}

}

Hello This is show() in A

Hello This is show() in B

Hello This is show() in C

Hello This is show() in D

Method Overriding Cont..
1. Sub class can override the methods defined by the super

class.

2. Overridden Methods in the sub classes should have same
name, same signature , same return type and may have
either the same or higher scope than super class method.

3. Java implements Run Time Polymorphism/ Dynamic Method
Dispatch by Method Overriding. [Late Binding]

4. Call to Overridden Methods is Resolved at Run Time.

5. Call to a overridden method is not decided by the type of
reference variable Rather by the type of the object where
reference variable is pointing.

6. While Overriding a Method, the sub class should assign
either same or higher access level than super class method.

class override3

{

public static void main(String args[])

{

A a1 = new B();

B b1 = (B) a1;

/*

A a1 = new B();

C c1 = (C) a1;

Exception in thread "main"

java.lang.ClassCastException: B

at override3.main(override3.java:39)

*/

}

}

Examples Overriding

class A

{

ǀoid shoǁ;Ϳ { …. }

}

class B extends A

{

ǀoid shoǁ;Ϳ { …. }

void show(int xͿ { … }

ǀoid priŶt;Ϳ { … }

}

A a1 = new B();

a1.show() ; // Valid

// a1.show(10); // Invalid

//a1.print(); // Invalid

When a super class variable points to a sub class object,

then it can only call overridden methods of the sub class.

class A

{

protected void show()

{

System.out.println("Hi");

}

}

class B extends A

{

void show()

{

System.out.println("Hi");

}

}

D:\Java1>javac AB.java

AB.java:10: show() in B cannot

override show() in A; attempting

to assign weaker

 access privileges; was protected

void show()

 ^

1 error

class A

{

private void show()

{

System.out.println("Hi");

}

}

class B extends A

{

int show()

{

System.out.println("Hi");

return 10;

}

}

NO

IS THIS METHOD
OVERRIDING

CODE WILL COMPILE

& RUN SUCESSFULLY

class A

{

static int show()

{

System.out.println("class A");

return 0;

}

}

class B extends A

{

void show()

{

System.out.println("class B");

}

}

What’s Wrong Here

sample.java:12: show() in B

cannot override show() in A;

overridden method is static

void show()

 ^

1 error

Nested Classes

 Java programming language allows you to

define a class within another class

class OuterClass

 { ...

class NestedClass { ... }

 }

Enclosing

Class OR

Outer Class

Nested

Class

A nested class is a member

 of its enclosing class

1.Nested has access to other members of the

enclosing class,even if they are declared private

2. Can be private, public, protected or friendly

access

Nested Class Types
Static nested classes

 1. Static keyword applied for class declaration

2. Static nested class can use the instance

fields/methods of the outer class only through object

reference.

3. Static nested class can be accessed

 OuterClass.StaticNestedClass

4. To create an object for the static nested class, use this

syntax:

OuterClass.StaticNestedClass nestedObject = new

OuterClass.StaticNestedClass();

Nested Class Types cont..

• Non-Static nested classes

 1. These nested classes do not have static keyword applied

2. Non-Static nested class can use the instance fields/methods of

the outer class directly.

3. To create an object for the non-static nested class, use this

syntax:

 OuterClass.NestedClass nestedObject = Outerobjectreference.

new innerclass();

Inner class instance can

only exists inside

Outer class instance.

class A

{

private int a;

A(int a)

{

this.a =a;

}

void print()

{

System.out.println("a="+a)

;

}

class B

 {

 int b;

 B(int b)

 {

 int c = b+10;

 this.b = c;

 }

 void show()

 {

 print();

 System.out.println("b="+b);

 }

 } // End of class B

} // End of class A

Nested
class with
friendly
access

Outer Class

Call to
print() of
outer class

Example 1 [Non-static Nested Class]

class innertest1

{

public static void main(String args[])

{

A a1 = new A(10);

A.B b1 = a1.new B(100);

b1.show();

}

}

To create an inner class instance for non-

static classes you need an outer class

reference.

Outer class Name

Inner class Name

Inner class Reference

Outer class Reference

If class B is Private then it is not visible in main().

A.B b1 = a1.new B(100); is WRONG/INVALID

Example 1 [Non-static Nested Class] ĐoŶt….

Example 2

class A

{

private int a;

private int b=10;

A(int a)

{

this.a=a;

}

class B

{

private int b;

B(int b)

{

this.b =b;

}

void show()

{

int b=20;

System.out.println("a="+a);

System.out.println("b="+b);

System.out.println("this.b="+this.b);

System.out.println("Outer b="+A.this.b);

}

} // End of B inner class

void show()

{

B b1 = new B(30);

b1.show();

}

} // End of Outer class A

Outer class

Nested Inner class [Non-

static Type]

Instance Field of B

Outer Class A͛s a

Local b

B͛s iŶstaŶĐe Field ď

A͛s iŶstaŶĐe Field ď

class innerTest

{

public static void main(String args[])

{

// Create an inner class B's instance

// Call show() method

// STEP 1

// Create an Outer Instance first

A a1 = new A(20);
A.B b1 = a1.new B(-30);
b1.show();

// inner class object instantiation thru anonymous

outer

// reference

A.B b2 = new A(30).new B(-40);
b2.show();
}

}

a=20

b=20

this.b=-30

Outer b=10

a=30

b=20

this.b=-40

Outer b=10

class A

{

private int a;

A(int a)

{

this.a =a;

}

void print()

{

System.out.println("a="+a

);

}

static class B

 {

 int b;

 B(int b)

 {

 int c = b+10;

 this.b = c;

 }

 void show()

 {

 // print(); INVALID

 A a1 = new A(10);

 a1.print();

 System.out.println("b="+b);

 }

 } // End of class B

 } // End of class A

Static nested class can

refere to outer members

only through outer

reference

Static inner

class

Static Inner class / Static Nested class Example

class innertest10

{

public static void main(String args[])

{

A.B b1 = new A.B(100);

b1.show();

}

}

Instance of static Inner

class

Example cont….

class A

{

private int a;

protected static int b=10;

A(int a)

{

this.a=a;

}

public void show()

{

System.out.println("a="+a);

display();

}

public static void display()

{

System.out.println("b="+b);

}

}

Static Nested class Example 2

static class B

{

private int a;

protected static int b=100;

B(int a)

{

this.a=a;

}

void show()

{

// A.this.show(); // Won't work show() is non-static in outer

display(); // Will work as method is static in outer

System.out.println("a="+a);

// System.out.println("a="+A.this.a);

// Won't work a is non-static in outer

System.out.println("b="+b); // Will refer to its own b

System.out.println("A'sb="+A.b); // will refer to outer class B

new A(40).show();

// This is how you can call non static methods of outer

}

} // End of inner class B

} // End of class A

Exaŵple 2 ĐoŶt….

class innerTest1

{

public static void main(String

args[])

{

A.B b1 = new A.B(-30);

b1.show();

}

}

D:\jdk1.3\bin>java innerTest1

b=10

a=-30

b=100

A'sb=10

a=40

b=10

Exaŵple 2 ĐoŶt….

Local Inner classes [Classes Within method body]

class A

{

private int a;

protected static int b=10;

A(int a)

{

this.a=a;

}

void show()

{

 class B

 {}

}

}

Class declared within a

method body.

Here method is show()

Local inner classes Can not

be declared as

public,private or protected

1. Class B is visible only in method

show().

2. It can be used within this show()

method only

3. Local inner classes can only use final

variables from its enclosing method.

4. However inner classes can refer to its

fields of enclosing class.

class A

{

private int a;

protected static int b=10;

A(int a)

{

this.a=a;

}

void show()

{

int x=10;

} // End of show() method

} // End of A class

D:\jdk1.3\bin>javac

innerTest2.java

innerTest2.java:23: local

variable x is accessed from

within inner class;

to be declared final

System.out.println("x="+x);

 ^

1 error

class B

{

private int b;

B(int b)

{

this.b=b;

}

void display()

{

System.out.println("a="+a);
System.out.println("b="+b);
System.out.println("x="+x);
}

} // End of class B

‘efereŶĐe for A͛s a

‘efereŶĐe for B͛s ď

Reference is wrong / errorneous

͚x͛ is loĐal variaďle iŶside the loĐal
method. Local classes can use only

final fields from enclosing method

class innertest

{

public static void

main(String args[])

{

final int a1=10;

class A

{

private int a;

private int b;

int c;

A(int a)

{

this.a =a;

b = a+20;

c = a+40;

}

void show()

{

System.out.println("a1="+a1);

System.out.println("a="+a);

System.out.println("b="+b);

System.out.println("c="+c);

}

} //End of A

new A(20).show();

print();

}// End of main

static void print()

{

/*
A a1 = new A(30);
a1.show();
*/
System.out.println("Hello"

);

}

}

OUTPUT

E:\oop>java innertest

a1=10

a=20

b=40

c=60

Hello

Anonymous Inner classes

• Another category of local inner classes

• Classes without any name i.e classes having
no name

• Can either implements an interface or
extends a class.

• Can not have more than one instance active
at a time.

• Whole body of the class is declared in a single
statement ending with ;

CoŶt…

 • Syntax [If extending a class]

[variable_type_superclass =] new superclass_name() {

 // properties and methods

 } [;]

• Syntax [If implementing an interface]

[variable_type_reference =] new reference_name() {

 // properties and methods

 } [;]

class A

{

private int a;

A(int a)

{

this.a =a;

}

void show()

{

System.out.println("a="+a);

} // End of show()

}// End of class A

Anonymous Inner Class Example

class innertest1

{

public static void main(String args[])

{

A a1 = new A(20){

 public void show()

 {

 super.show();

 System.out.println("Hello");

 }

 public void display()

 {

 System.out.println("Hi");

 }

 };

a1.show();

// a1.display();

}

}

Calling show from inner class

Anonymous inner class extending super class A

Anonymous inner class implementing an interface

interface X

{

int sum(int a,int b);

int mul(int x,int y);

}

class innertest2

{

public static void main(String args[])

{

X x1 = new X()
 {
 public int sum(int a,int b)
 {
 return a+b;
 }
 public int mul(int a,int b)
 {
 return a*b;
 }
 };
System.out.println(x1.sum(10,20));

System.out.println(x1.mul(10,20));

}// End of main

}// End of innertest2

Wrapper Classes

• Java uses primitive types, such as int, char,

double to hold the basic data types supported by

the language.

• Sometimes it is required to create an object

representation of these primitive types.

• These are collection classes that deal only with

such objects. One needs to wrap the primitive

type in a class.

• To satisfy this need, Java provides classes that

correspond to each of the primitive types. Basically,

these classes encapsulate, or wrap, the primitive types

within a class.

• Thus, they are commonly referred to as type

wrapper. Type wrapper are classes that encapsulate a

primitive type within an object.

• The wrapper types are Byte, Short, Integer,

Long, Character, Boolean, Double, Float.

• These classes offer a wide array of methods that

allow to fully integrate the primitive types into Java's

object hierarchy.

• Wrapper Classes are based upon the well-known

software engineering design pattern called the

Wrapper pattern.

– A design pattern is a template solution to a common problem. It

describes the problem and identifies the recommended

solution(s) to that problem.

– Because design patterns deal with common problems, they are

often quite abstract!

• The problem:e.g. we want to store an int in a Vector, but Vectors

do not accept primitive types.

• The Solution:

– We create another class that wraps the underlying class/type and

provides an appropriate interface for the client.

– e.g. we create an Integer class that subclasses Object (as all

classes do), allowing us to store wrapped iŶt’s in Vectors.

Example that will not work

import java.util.Vector;

public class MyApp {

 public static void main(String[] args) {

 int myValue = 2;

 Vector myVector = new Vector();

 myVector.addElement(myValue);

 for (int x=0; x < myVector.size(); x++) {

 System.out.println(“Value: “ +
myVector.get(x));

 }

 }

}

The compiler detects

an error here

Java Wrapper Classes

Object

Boolean Character Void Number String

Short Double Integer Long Float Byte

Primitives & Wrappers

• Java has a wrapper class for each of the
eight primitive data types:

Primitive

Type

Wrapper

Class

Primitive

Type

Wrapper

Class

boolean Boolean float Float

byte Byte int Integer

char Character long Long

double Double short Short

Converting Primitive to Object

• Constructor calling Conversion Action

• Integer IntVal = new Integer(i);

 Primitive integer to Integer object

• Float FloatVal = new Float(f);

 Primitive float to Float object

• Double DoubleVal = new Double(d);

 Primitive double to Double object

• Long LongVal new Long(l);

 Primitive long to Long object

Converting Numeric Strings to

Primitive
• int i =integer.parselnt(str);

 Converts String str into primitive integer i

• long l = Long.parseLong(str);

 Converts String str into primitive long l

• Double d=Double.parseDouble(str);

 Converting String to primitive double

Note:

 parselnt() and parseLong;Ϳ … ŵethods thƌoǁ

a NumberFormatException if the value of the

str does not represent an integer.

Some Useful Methods

• The Java Wrapper Classes include various useful methods:
– Getting a value from a String

e.g. int value = Integer.parseInt(“33”);

sets value to 33.

– Converting a value to a String:

e.g. String str = Double.toString(33.34);

sets stƌ to the “tƌiŶg ͞ϯϯ.ϯϰ .͟

– Getting a wrapper class instance for a value:

e.g. Integer obj = Integer.getInteger(“12”);

creates a new Integer object with value 12 and makes obj refer to that
object.

Reading a Double

import java.io.*;

class MyProgram {
 public static void main(String[] args) {
 BufferedReader in = new BufferedReader(

 new InputStreamReader(System.in));
 String line = null;

 System.out.println("Input Something:");

 try {
 line = in.readLine();

 } catch (IOException ie) {
 System.out.println("Exception caught: " + ie);

 }

 try {
 double value = Double.parseDouble(line);
 System.out.println("Value: " + value);

 } catch (NumberFormatException nfe) {
 System.out.println("You didn't enter a double number");

 }

 }

}

Use of the Wrapper Classes

• Jaǀa’s primitive data types (boolean, int, etc.)
are not classes.

• Wrapper classes are used in situations where
objects are required, such as for elements of a
Collection:

List<Integer> a = new ArrayList<Integer>();

methodRequiringListOfIntegers(a);

Value => Object: Wrapper Object

Creation

• Wrapper.valueOf() takes a value (or
string) and returns an object of that
class:

Integer i1 = Integer.valueOf(42);

Integer i2 = Integer.valueOf(“42”);

Boolean b1 = Boolean .valueOf(true);

Boolean b2 = Boolean .valueOf(“true”);

Long n1 = Long.valueOf(42000000L);

Long n1 = Long.valueOf(“42000000L”);

Object => Value

• Each wrapper class Type has a method typeValue to obtain
the oďjeĐt’s ǀalue:

Integer i1 = Integer.valueOf(42);

Boolean b1 = Boolean.valueOf(“false”);
System.out.println(i1.intValue());

System.out.println(b1.intValue());

=>

42

false

String => value

• The Wrapper class for each primitive type has a method
parseType() to parse a string representation & return the
literal value.

Integer.parseInt(“42”) => 42

Boolean.parseBoolean(“true”) => true

Double.parseDouble(“2.71”) => 2.71

//…

• Common use: Parsing the arguments to a program:

Parsing argument lists

// Parse int and float program args.

public parseArgs(String[] args) {

 for (int i = 0; i < args.length; i++) {

 try {

 …println(Integer.parseInt(args[i]));
 } catch (Exception e) {

}}}

Sample values:

boolObj new Boolean(Boolean.TRUE);

charObj = new Character('a');

byteObj = new Byte("100");

shortObj = new Short("32000");

intObj = new Integer(2000000);

longObj = new Long(500000000000000000L);

floatObj = new Float(1.42);

doubleObj = new Double(1.42);

printWrapperInfo(); //method to print objects above

Sample values (output from

previous slide):

=>

For Boolean & Character Wrappers:

 Boolean:true

 Character:a

For Number wrappers:

 Byte:100

 Short:32000

 Integer:2000000

 Long:500000000000000000

 Float:1.42

 Double:1.42

Each Number Wrapper has a

MAX_VALUE constant:

byteObj = new Byte(Byte.MAX_VALUE);

shortObj = new Short(Short.MAX_VALUE);

intObj = new Integer(Integer.MAX_VALUE);

longObj = new Long(Long.MAX_VALUE);

floatObj = new Float(Float.MAX_VALUE);

doubleObj = new Double(Double.MAX_VALUE);

printNumValues("MAXIMUM NUMBER VALUES:");

MAX values (output from previous

slide):

=>

 Byte:127

 Short:32767

 Integer:2147483647

 Long:9223372036854775807

 Float:3.4028235E38

 Double:1.7976931348623157E308

Byte Example
• The Byte class encapsulates a byte value. It

defines the constants MAX_VALUE and

MIN_VALUE and provides these constructors:

• Byte(byte b)

Byte(String str)

• Here, b is a byte value and str is the string

equivalent of a byte value.

Byte Example

Short Example
• The Short class encapsulates a short value.

It defines the constants MAX_VALUE and

MIN_VALUE

and provides the following constructors:

 Short(short s)

Short(String str)

Short Example

Integer Example
• The Integer class encapsulates an integer value.

This class provides following constructors:

• Integer(int i)

Integer(String str)

• Here, i is a simple int value and str is a String

object.

Integer Example

Character Example
• The Character class encapsulates a char value.

This class provides the following constructor.

• Character(char ch)

• Here, c is a char value. charValue() method

returns the char value that is encapsulated by a

Character object and has the following form:

• char charValue()

Character Example

Boolean Example
• The Boolean class encapsulates a Boolean value.

It defines FALSE and TRUE constants.

• This class provides following constructors:

• Boolean(Boolean b)
Boolean(String str)

• Here, b is a Boolean value and str is the string
equivalent of a Boolean value.

• The methods associated with Boolean Class
are as follows:

1. Boolean booleanValue()

2. Boolean equals(Boolean b)

3. String toString(Boolean b)

Boolean Example

java2all

The Object Class
• Every java class has Object as its superclass and thus

inherits the Object methods.

• Object is a non-abstract class

• Many Object methods, however, have
iŵpleŵeŶtatioŶs that aƌeŶ’t paƌtiĐulaƌly useful iŶ
general

• In most cases it is a good idea to override these
methods with more useful versions.

• In other cases it is required if you want your objects
to correctly work with other class libraries.

Clone Method
• ReĐall that the ͞=͞ opeƌatoƌ siŵply Đopies OďjeĐt

references. e.g.,

>> “tudeŶt s1 = Ŷeǁ “tudeŶt;͞“ŵith ,͟ Jiŵ, ϯ.1ϯͿ;
>> Student s2 = s1;

>> s1.setNaŵe;͞Sahil͟Ϳ;
>> System.out.println(s2.getName());

 OP:- Sahil

• What if we want to actually make a copy of an Object?

• Most elegant way is to use the clone() method inherited
from Object.

Student s2 = (Student) s1.clone();

About clone() method
• First, note that the clone method is protected in the Object

class.

• This means that it is protected for subclasses as well.

• Hence, it cannot be called from within an Object of another
class and package.

• To use the clone method, you must override in your
subclass and upgrade visibility to public.

• Also, any class that uses clone must implement the
Cloneable interface.

• This is a ďit diffeƌeŶt fƌoŵ otheƌ iŶteƌfaĐes that ǁe’ǀe seeŶ.
• There are no methods; rather, it is used just as a marker of

your intent.

• The method that needs to be implemented is inherited
from Object.

Issue With clone() method
• Finally, clone throws a CloneNotSupportedException.

• This is thrown if your class is not marked Cloneable.

• This is all a little odd but you must handle this in subclass.

Steps For Cloning
• To reiterate, if you would like objects of class C to

support cloning, do the following:

– implement the Cloneable interface

– override the clone method with public access privileges

– call super.clone()

– Handle CloneNotSupported Exception.

• This will get you default cloning means shallow
copy.

Shallow Copies With Cloning
• We haǀeŶ’t yet said ǁhat the default ĐloŶe;Ϳ

method does.

• By default, clone makes a shallow copy of all iǀ’s iŶ a
class.

• Shallow copy means that all native datatype iǀ’s aƌe
Đopied iŶ ƌegulaƌ ǁay, ďut iǀ’s that aƌe oďjeĐts aƌe
not recursed upon – that is, references are copied.

• This is not what you typically want.

• Must override clone explicitly for Deep Copying.

Deep Copies
• For deep copies that recurse thƌough the oďjeĐt iǀ’s,

you have to do some more work.

• super.clone() is first called to clone the first level of
iǀ’s.

• RetuƌŶed ĐloŶed oďjeĐt’s oďjeĐt fields aƌe theŶ
accessed one by one and clone method is called for
each.

• See DeepClone.java example

Additional clone() properties
• Note that the following are typical, but not strictly

required:

– x.clone() != x;

– x.clone().getClass() == x.getClass();

– x.clone().equals(x);

• Finally, though no one really cares, Object
does not support clone();

toString() method
• The Object method

 String toString();

 is intended to return a readable textual representation
of the object upon which it is called. This is great for
debugging!

• Best way to think of this is using a print statement. If we
execute:

 System.out.println(someObject);

 we would like to see some meaningful info about
someObject, suĐh as ǀalues of iǀ’s, etĐ.

default toString()
• By default toString() prints total garbage that no one is

interested in
 getClass().getName() + '@' + Integer.toHexString(hashCode())

• By convention, print simple formatted list of field names
and values (or some important subset).

• The intent is not to overformat.

• Typically used for debugging.

• Always override toString()!

equals() method

• Recall that boolean == method compares when

applied to object compares references.

• That is, two object are the same if the point to the

same memory.

• Since java does not support operator overloading,

you cannot change this operator.

• However, the equals method of the Object class gives

you a chance to more meaningful compare objects of

a given class.

equals method, cont

• By default, equals(Object o) does exactly what

the == operator does – compare object

references.

• To override, simply override method with

version that does more meaningful test, ie

Đoŵpaƌes iǀ’s aŶd ƌetuƌŶs tƌue if eƋual, false
otherwise.

• See Equals.java example in course notes.

equals subtleties

• As with any method that you override, to do

so properly you must obey contracts that go

beyond interface matching.

• With equals, the extra conditions that must be

met are discussed on the next slide:

equals contract

 It is reflexive: for any reference value x, x.equals(x) should
return true.

 It is symmetric: for any reference values x and y,
x.equals(y) should return true if and only if y.equals(x)
returns true.

 It is transitive: for any reference values x, y, and z, if
x.equals(y) returns true and y.equals(z) returns true,
then x.equals(z) should return true.

 It is consistent: for any reference values x and y, multiple
invocations of x.equals(y) consistently return true or
consistently return false, provided no information used in
equals comparisons on the object is modified.

 For any non-null reference value x, x.equals(null) should
return false.

hashcode() method

• Java provides all objects with the ability to
generate a hash code.

• By default, the hashing algorithm is typically
based on an integer representation of the java
address.

• This method is supported for use with
java.util.Hashtable

• Will discuss Hashtable in detail during
Collections discussion.

Rules for overriding hashcode

 Whenever invoked on the same object more than once, the hashCode

method must return the same integer, provided no information used

in equals comparisons on the object is modified.

 If two objects are equal according to the equals(Object) method, then

calling the hashCode method on each of the two objects must

produce the same integer result.

 It is not required that if two objects are unequal according to the

equals(java.lang.Object) method, then calling the hashCode method

on each of the two objects must produce distinct integer results.

However, the programmer should be aware that producing distinct

integer results for unequal objects may improve the performance of

hashtables.

http://java.sun.com/j2se/1.4.1/docs/api/java/lang/Object.html

finalize() method

• Called as final step when Object is no longer used,
just before garbage collection

• Object version does nothing

• Since java has automatic garbage collection, finalize()
does not need to be overridden reclaim memory.

• Can be used to reclaim other resources – close
streams, database connections, threads.

• However, it is strongly recommended not to rely on
this for scarce resources.

• Be explicit and create own dispose method.

Polymorphism

• Polymorphism is the ability of an object to take on

many forms.

• The most common use of polymorphism in OOP

occurs when a parent class reference is used to

refer to a child class object.

• Any Java object that can pass more than one IS-A

test is considered to be polymorphic.

• In Java, all Java objects are polymorphic since any

object will pass the IS-A test for their own type and

for the class Object.

Polymorphism

• It is important to know that the only possible way to

access an object is through a reference variable.

• A reference variable can be of only one type.

• Once declared, the type of a reference variable

cannot be changed.

• The reference variable can be reassigned to other

objects provided that it is not declared final.

• The type of the reference variable would determine

the methods that it can invoke on the object.

Polymorphism

• A reference variable can refer to any object of its

declared type or any subtype of its declared type.

• A reference variable can be declared as a class or

interface type.

 refer example from next slide.

Polymorphism

Method Overriding Cont..
1. Sub class can override the methods defined by the super

class.

2. Overridden Methods in the sub classes should have same
name, same signature , same return type and may have
either the same or higher scope than super class method.

3. Java implements Run Time Polymorphism/ Dynamic Method
Dispatch by Method Overriding. [Late Binding]

4. Call to Overridden Methods is Resolved at Run Time.

5. Call to a overridden method is not decided by the type of
reference variable Rather by the type of the object where
reference variable is pointing.

6. While Overriding a Method, the sub class should assign
either same or higher access level than super class method.

EXAMPLE METHOD OVERRIDING class A

{

void show()

{

System.out.println("Hello This is show() in A");

}// End of show() Method

} // End of class A

class B extends A

{

void show()

{

System.out.println("Hello This is show() in B");

}// End of show() Method

} // End of class B class override

{

public static void main(String args[])

{

// super class reference variable

// can point to sub class object

A a1 = new A();

a1.show();

a1 = new B();

a1.show();

}

}

B class overrides show() method from

super class A

Call to show()

of A class

Call to show()

of B class

class A

{

void show(int a)

{

System.out.println("Hello This is show()

in A");

}

}

class B extends A

{

void show()

{

System.out.println("Hello This is show()

in B");

}

}

class override1

{

public static void main(String args[])

{

/*

A a1 = new B();

a1.show(); */

A a1 = new A();

a1.show(10);

B b1 = new B();

b1.show(10);

b1.show(); }

OUTPUT

Hello This is show() in A

Hello This is show() in A

Hello This is show() in B

Is this Method

Overriding

NO

Dynamic Method Dispatch

1. Super class reference variable can refer to a sub class object.

2. Super class variable if refers to sub class object can call only

overridden methods.

3. Call to an overridden method is decided by the type of object

referred to.

A

B C D

A a1 = new B();

a1.show(); // call to show() of B

a1 = new C();

a1.show(); // call to show() of C

a1 = new D();

a1.show(); // call to show() of D

 Assume show() Method is

Overridden by sub classes

class A
{
void show()
{
System.out.println("Hello This is
show() in A");
}
}
class B extends A
{
void show()
{
System.out.println("Hello This is
show() in B");
}
}

class C extends A

{

void show()

{

System.out.println("Hello This

is show() in C");

}

}

class D extends A

{

void show()

{

System.out.println("Hello This

is show() in D");

}

}

DYNAMIC METHOD DISPATCH

CONTINUED…..

class override2

{

public static void main(String

args[])

{

A a1 = new A();

a1.show();

a1 = new B();

a1.show();

a1 = new C();

a1.show();

a1 = new D();

a1.show();

}

}

Hello This is show() in A

Hello This is show() in B

Hello This is show() in C

Hello This is show() in D

Method Overriding Cont..
1. Sub class can override the methods defined by the super

class.

2. Overridden Methods in the sub classes should have same
name, same signature , same return type and may have
either the same or higher scope than super class method.

3. Java implements Run Time Polymorphism/ Dynamic Method
Dispatch by Method Overriding. [Late Binding]

4. Call to Overridden Methods is Resolved at Run Time.

5. Call to a overridden method is not decided by the type of
reference variable Rather by the type of the object where
reference variable is pointing.

6. While Overriding a Method, the sub class should assign
either same or higher access level than super class method.

class override3

{

public static void main(String args[])

{

A a1 = new B();

B b1 = (B) a1;

/*

A a1 = new B();

C c1 = (C) a1;

Exception in thread "main"

java.lang.ClassCastException: B

at override3.main(override3.java:39)

*/

}

}

Examples Overriding

class A

{

ǀoid shoǁ;Ϳ { …. }

}

class B extends A

{

ǀoid shoǁ;Ϳ { …. }

void show(int xͿ { … }

ǀoid priŶt;Ϳ { … }

}

A a1 = new B();

a1.show() ; // Valid

// a1.show(10); // Invalid

//a1.print(); // Invalid

When a super class variable points to a sub class object,

then it can only call overridden methods of the sub class.

class A

{

protected void show()

{

System.out.println("Hi");

}

}

class B extends A

{

void show()

{

System.out.println("Hi");

}

}

D:\Java1>javac AB.java

AB.java:10: show() in B cannot

override show() in A; attempting

to assign weaker

 access privileges; was protected

void show()

 ^

1 error

class A

{

private void show()

{

System.out.println("Hi");

}

}

class B extends A

{

int show()

{

System.out.println("Hi");

return 10;

}

}

NO

IS THIS METHOD
OVERRIDING

CODE WILL COMPILE

& RUN SUCESSFULLY

class A

{

static int show()

{

System.out.println("class A");

return 0;

}

}

class B extends A

{

void show()

{

System.out.println("class B");

}

}

What’s Wrong Here

sample.java:12: show() in B

cannot override show() in A;

overridden method is static

void show()

 ^

1 error

Nested Classes

 Java programming language allows you to

define a class within another class

class OuterClass

 { ...

class NestedClass { ... }

 }

Enclosing

Class OR

Outer Class

Nested

Class

A nested class is a member

 of its enclosing class

1.Nested has access to other members of the

enclosing class,even if they are declared private

2. Can be private, public, protected or friendly

access

Nested Class Types
Static nested classes

 1. Static keyword applied for class declaration

2. Static nested class can use the instance

fields/methods of the outer class only through object

reference.

3. Static nested class can be accessed

 OuterClass.StaticNestedClass

4. To create an object for the static nested class, use this

syntax:

OuterClass.StaticNestedClass nestedObject = new

OuterClass.StaticNestedClass();

Nested Class Types cont..

• Non-Static nested classes

 1. These nested classes do not have static keyword applied

2. Non-Static nested class can use the instance fields/methods of

the outer class directly.

3. To create an object for the non-static nested class, use this

syntax:

 OuterClass.NestedClass nestedObject = Outerobjectreference.

new innerclass();

Inner class instance can

only exists inside

Outer class instance.

class A

{

private int a;

A(int a)

{

this.a =a;

}

void print()

{

System.out.println("a="+a)

;

}

class B

 {

 int b;

 B(int b)

 {

 int c = b+10;

 this.b = c;

 }

 void show()

 {

 print();

 System.out.println("b="+b);

 }

 } // End of class B

} // End of class A

Nested
class with
friendly
access

Outer Class

Call to
print() of
outer class

Example 1 [Non-static Nested Class]

class innertest1

{

public static void main(String args[])

{

A a1 = new A(10);

A.B b1 = a1.new B(100);

b1.show();

}

}

To create an inner class instance for non-

static classes you need an outer class

reference.

Outer class Name

Inner class Name

Inner class Reference

Outer class Reference

If class B is Private then it is not visible in main().

A.B b1 = a1.new B(100); is WRONG/INVALID

Example 1 [Non-static Nested Class] ĐoŶt….

Example 2

class A

{

private int a;

private int b=10;

A(int a)

{

this.a=a;

}

class B

{

private int b;

B(int b)

{

this.b =b;

}

void show()

{

int b=20;

System.out.println("a="+a);

System.out.println("b="+b);

System.out.println("this.b="+this.b);

System.out.println("Outer b="+A.this.b);

}

} // End of B inner class

void show()

{

B b1 = new B(30);

b1.show();

}

} // End of Outer class A

Outer class

Nested Inner class [Non-

static Type]

Instance Field of B

Outer Class A͛s a

Local b

B͛s iŶstaŶĐe Field ď

A͛s iŶstaŶĐe Field ď

class innerTest

{

public static void main(String args[])

{

// Create an inner class B's instance

// Call show() method

// STEP 1

// Create an Outer Instance first

A a1 = new A(20);
A.B b1 = a1.new B(-30);
b1.show();

// inner class object instantiation thru anonymous

outer

// reference

A.B b2 = new A(30).new B(-40);
b2.show();
}

}

a=20

b=20

this.b=-30

Outer b=10

a=30

b=20

this.b=-40

Outer b=10

class A

{

private int a;

A(int a)

{

this.a =a;

}

void print()

{

System.out.println("a="+a

);

}

static class B

 {

 int b;

 B(int b)

 {

 int c = b+10;

 this.b = c;

 }

 void show()

 {

 // print(); INVALID

 A a1 = new A(10);

 a1.print();

 System.out.println("b="+b);

 }

 } // End of class B

 } // End of class A

Static nested class can

refere to outer members

only through outer

reference

Static inner

class

Static Inner class / Static Nested class Example

class innertest10

{

public static void main(String args[])

{

A.B b1 = new A.B(100);

b1.show();

}

}

Instance of static Inner

class

Example cont….

class A

{

private int a;

protected static int b=10;

A(int a)

{

this.a=a;

}

public void show()

{

System.out.println("a="+a);

display();

}

public static void display()

{

System.out.println("b="+b);

}

}

Static Nested class Example 2

static class B

{

private int a;

protected static int b=100;

B(int a)

{

this.a=a;

}

void show()

{

// A.this.show(); // Won't work show() is non-static in outer

display(); // Will work as method is static in outer

System.out.println("a="+a);

// System.out.println("a="+A.this.a);

// Won't work a is non-static in outer

System.out.println("b="+b); // Will refer to its own b

System.out.println("A'sb="+A.b); // will refer to outer class B

new A(40).show();

// This is how you can call non static methods of outer

}

} // End of inner class B

} // End of class A

Exaŵple 2 ĐoŶt….

class innerTest1

{

public static void main(String

args[])

{

A.B b1 = new A.B(-30);

b1.show();

}

}

D:\jdk1.3\bin>java innerTest1

b=10

a=-30

b=100

A'sb=10

a=40

b=10

Exaŵple 2 ĐoŶt….

Local Inner classes [Classes Within method body]

class A

{

private int a;

protected static int b=10;

A(int a)

{

this.a=a;

}

void show()

{

 class B

 {}

}

}

Class declared within a

method body.

Here method is show()

Local inner classes Can not

be declared as

public,private or protected

1. Class B is visible only in method

show().

2. It can be used within this show()

method only

3. Local inner classes can only use final

variables from its enclosing method.

4. However inner classes can refer to its

fields of enclosing class.

class A

{

private int a;

protected static int b=10;

A(int a)

{

this.a=a;

}

void show()

{

int x=10;

} // End of show() method

} // End of A class

D:\jdk1.3\bin>javac

innerTest2.java

innerTest2.java:23: local

variable x is accessed from

within inner class;

to be declared final

System.out.println("x="+x);

 ^

1 error

class B

{

private int b;

B(int b)

{

this.b=b;

}

void display()

{

System.out.println("a="+a);
System.out.println("b="+b);
System.out.println("x="+x);
}

} // End of class B

‘efereŶĐe for A͛s a

‘efereŶĐe for B͛s ď

Reference is wrong / errorneous

͚x͛ is loĐal variaďle iŶside the loĐal
method. Local classes can use only

final fields from enclosing method

class innertest

{

public static void

main(String args[])

{

final int a1=10;

class A

{

private int a;

private int b;

int c;

A(int a)

{

this.a =a;

b = a+20;

c = a+40;

}

void show()

{

System.out.println("a1="+a1);

System.out.println("a="+a);

System.out.println("b="+b);

System.out.println("c="+c);

}

} //End of A

new A(20).show();

print();

}// End of main

static void print()

{

/*
A a1 = new A(30);
a1.show();
*/
System.out.println("Hello"

);

}

}

OUTPUT

E:\oop>java innertest

a1=10

a=20

b=40

c=60

Hello

Anonymous Inner classes

• Another category of local inner classes

• Classes without any name i.e classes having
no name

• Can either implements an interface or
extends a class.

• Can not have more than one instance active
at a time.

• Whole body of the class is declared in a single
statement ending with ;

CoŶt…

 • Syntax [If extending a class]

[variable_type_superclass =] new superclass_name() {

 // properties and methods

 } [;]

• Syntax [If implementing an interface]

[variable_type_reference =] new reference_name() {

 // properties and methods

 } [;]

class A

{

private int a;

A(int a)

{

this.a =a;

}

void show()

{

System.out.println("a="+a);

} // End of show()

}// End of class A

Anonymous Inner Class Example

class innertest1

{

public static void main(String args[])

{

A a1 = new A(20){

 public void show()

 {

 super.show();

 System.out.println("Hello");

 }

 public void display()

 {

 System.out.println("Hi");

 }

 };

a1.show();

// a1.display();

}

}

Calling show from inner class

Anonymous inner class extending super class A

Anonymous inner class implementing an interface

interface X

{

int sum(int a,int b);

int mul(int x,int y);

}

class innertest2

{

public static void main(String args[])

{

X x1 = new X()
 {
 public int sum(int a,int b)
 {
 return a+b;
 }
 public int mul(int a,int b)
 {
 return a*b;
 }
 };
System.out.println(x1.sum(10,20));

System.out.println(x1.mul(10,20));

}// End of main

}// End of innertest2

Wrapper Classes

• Java uses primitive types, such as int, char,

double to hold the basic data types supported by

the language.

• Sometimes it is required to create an object

representation of these primitive types.

• These are collection classes that deal only with

such objects. One needs to wrap the primitive

type in a class.

• To satisfy this need, Java provides classes that

correspond to each of the primitive types. Basically,

these classes encapsulate, or wrap, the primitive types

within a class.

• Thus, they are commonly referred to as type

wrapper. Type wrapper are classes that encapsulate a

primitive type within an object.

• The wrapper types are Byte, Short, Integer,

Long, Character, Boolean, Double, Float.

• These classes offer a wide array of methods that

allow to fully integrate the primitive types into Java's

object hierarchy.

• Wrapper Classes are based upon the well-known

software engineering design pattern called the

Wrapper pattern.

– A design pattern is a template solution to a common problem. It

describes the problem and identifies the recommended

solution(s) to that problem.

– Because design patterns deal with common problems, they are

often quite abstract!

• The problem:e.g. we want to store an int in a Vector, but Vectors

do not accept primitive types.

• The Solution:

– We create another class that wraps the underlying class/type and

provides an appropriate interface for the client.

– e.g. we create an Integer class that subclasses Object (as all

classes do), allowing us to store wrapped iŶt’s in Vectors.

Example that will not work

import java.util.Vector;

public class MyApp {

 public static void main(String[] args) {

 int myValue = 2;

 Vector myVector = new Vector();

 myVector.addElement(myValue);

 for (int x=0; x < myVector.size(); x++) {

 System.out.println(“Value: “ +
myVector.get(x));

 }

 }

}

The compiler detects

an error here

Java Wrapper Classes

Object

Boolean Character Void Number String

Short Double Integer Long Float Byte

Primitives & Wrappers

• Java has a wrapper class for each of the
eight primitive data types:

Primitive

Type

Wrapper

Class

Primitive

Type

Wrapper

Class

boolean Boolean float Float

byte Byte int Integer

char Character long Long

double Double short Short

Converting Primitive to Object

• Constructor calling Conversion Action

• Integer IntVal = new Integer(i);

 Primitive integer to Integer object

• Float FloatVal = new Float(f);

 Primitive float to Float object

• Double DoubleVal = new Double(d);

 Primitive double to Double object

• Long LongVal new Long(l);

 Primitive long to Long object

Converting Numeric Strings to

Primitive
• int i =integer.parselnt(str);

 Converts String str into primitive integer i

• long l = Long.parseLong(str);

 Converts String str into primitive long l

• Double d=Double.parseDouble(str);

 Converting String to primitive double

Note:

 parselnt() and parseLong;Ϳ … ŵethods thƌoǁ

a NumberFormatException if the value of the

str does not represent an integer.

Some Useful Methods

• The Java Wrapper Classes include various useful methods:
– Getting a value from a String

e.g. int value = Integer.parseInt(“33”);

sets value to 33.

– Converting a value to a String:

e.g. String str = Double.toString(33.34);

sets stƌ to the “tƌiŶg ͞ϯϯ.ϯϰ .͟

– Getting a wrapper class instance for a value:

e.g. Integer obj = Integer.getInteger(“12”);

creates a new Integer object with value 12 and makes obj refer to that
object.

Reading a Double
import java.io.*;

class MyProgram {

 public static void main(String[] args) {

 BufferedReader in = new BufferedReader(

 new
InputStreamReader(System.in));

 String line = null;

 System.out.println("Input Something:");

 try {

 line = in.readLine();

 } catch (IOException ie) {

 System.out.println("Exception caught: " + ie);

 }

 try {

 double value = Double.parseDouble(line);

 System.out.println("Value: " + value);

 } catch (NumberFormatException nfe) {

 System.out.println("You didn't enter a double number");

 }

 }

}

Use of the Wrapper Classes

• Jaǀa’s primitive data types (boolean, int, etc.)
are not classes.

• Wrapper classes are used in situations where
objects are required, such as for elements of a
Collection:

List<Integer> a = new ArrayList<Integer>();

methodRequiringListOfIntegers(a);

Value => Object: Wrapper Object

Creation

• Wrapper.valueOf() takes a value (or
string) and returns an object of that
class:

Integer i1 = Integer.valueOf(42);

Integer i2 = Integer.valueOf(“42”);

Boolean b1 = Boolean .valueOf(true);

Boolean b2 = Boolean .valueOf(“true”);

Long n1 = Long.valueOf(42000000L);

Long n1 = Long.valueOf(“42000000L”);

Object => Value

• Each wrapper class Type has a method typeValue to obtain
the oďjeĐt’s ǀalue:

Integer i1 = Integer.valueOf(42);

Boolean b1 = Boolean.valueOf(“false”);
System.out.println(i1.intValue());

System.out.println(b1.intValue());

=>

42

false

String => value

• The Wrapper class for each primitive type has a method
parseType() to parse a string representation & return the
literal value.

Integer.parseInt(“42”) => 42

Boolean.parseBoolean(“true”) => true

Double.parseDouble(“2.71”) => 2.71

//…

• Common use: Parsing the arguments to a program:

Parsing argument lists

// Parse int and float program args.

public parseArgs(String[] args) {

 for (int i = 0; i < args.length; i++) {

 try {

 …println(Integer.parseInt(args[i]));
 } catch (Exception e) {

}}}

Sample values:

boolObj new Boolean(Boolean.TRUE);

charObj = new Character('a');

byteObj = new Byte("100");

shortObj = new Short("32000");

intObj = new Integer(2000000);

longObj = new Long(500000000000000000L);

floatObj = new Float(1.42);

doubleObj = new Double(1.42);

printWrapperInfo(); //method to print objects above

Sample values (output from

previous slide):

=>

For Boolean & Character Wrappers:

 Boolean:true

 Character:a

For Number wrappers:

 Byte:100

 Short:32000

 Integer:2000000

 Long:500000000000000000

 Float:1.42

 Double:1.42

Each Number Wrapper has a

MAX_VALUE constant:

byteObj = new Byte(Byte.MAX_VALUE);

shortObj = new Short(Short.MAX_VALUE);

intObj = new Integer(Integer.MAX_VALUE);

longObj = new Long(Long.MAX_VALUE);

floatObj = new Float(Float.MAX_VALUE);

doubleObj = new Double(Double.MAX_VALUE);

printNumValues("MAXIMUM NUMBER VALUES:");

MAX values (output from

previous slide):

=>

 Byte:127

 Short:32767

 Integer:2147483647

 Long:9223372036854775807

 Float:3.4028235E38

 Double:1.7976931348623157E308

Byte Example
• The Byte class encapsulates a byte value. It

defines the constants MAX_VALUE and

MIN_VALUE and provides these constructors:

• Byte(byte b)

Byte(String str)

• Here, b is a byte value and str is the string

equivalent of a byte value.

Byte Example

Short Example
• The Short class encapsulates a short value.

It defines the constants MAX_VALUE and

MIN_VALUE

and provides the following constructors:

 Short(short s)

Short(String str)

Short Example

Integer Example
• The Integer class encapsulates an integer value.

This class provides following constructors:

• Integer(int i)

Integer(String str)

• Here, i is a simple int value and str is a String

object.

Integer Example

Character Example
• The Character class encapsulates a char value.

This class provides the following constructor.

• Character(char ch)

• Here, c is a char value. charValue() method

returns the char value that is encapsulated by a

Character object and has the following form:

• char charValue()

Character Example

Boolean Example
• The Boolean class encapsulates a Boolean value.

It defines FALSE and TRUE constants.

• This class provides following constructors:

• Boolean(Boolean b)
Boolean(String str)

• Here, b is a Boolean value and str is the string
equivalent of a Boolean value.

• The methods associated with Boolean Class
are as follows:

1. Boolean booleanValue()

2. Boolean equals(Boolean b)

3. String toString(Boolean b)

Boolean Example

java2all

The Object Class
• Every java class has Object as its superclass and thus

inherits the Object methods.

• Object is a non-abstract class

• Many Object methods, however, have
iŵpleŵeŶtatioŶs that aƌeŶ’t paƌtiĐulaƌly useful iŶ
general

• In most cases it is a good idea to override these
methods with more useful versions.

• In other cases it is required if you want your objects
to correctly work with other class libraries.

Clone Method
• ReĐall that the ͞=͞ opeƌatoƌ siŵply Đopies OďjeĐt

references. e.g.,

>> “tudeŶt s1 = Ŷeǁ “tudeŶt;͞“ŵith ,͟ Jiŵ, ϯ.1ϯͿ;
>> Student s2 = s1;

>> s1.setNaŵe;͞Sahil͟Ϳ;
>> System.out.println(s2.getName());

 OP:- Sahil

• What if we want to actually make a copy of an Object?

• Most elegant way is to use the clone() method inherited
from Object.

Student s2 = (Student) s1.clone();

About clone() method
• First, note that the clone method is protected in the Object

class.

• This means that it is protected for subclasses as well.

• Hence, it cannot be called from within an Object of another
class and package.

• To use the clone method, you must override in your
subclass and upgrade visibility to public.

• Also, any class that uses clone must implement the
Cloneable interface.

• This is a ďit diffeƌeŶt fƌoŵ otheƌ iŶteƌfaĐes that ǁe’ǀe seeŶ.
• There are no methods; rather, it is used just as a marker of

your intent.

• The method that needs to be implemented is inherited
from Object.

Issue With clone() method
• Finally, clone throws a CloneNotSupportedException.

• This is thrown if your class is not marked Cloneable.

• This is all a little odd but you must handle this in subclass.

Steps For Cloning
• To reiterate, if you would like objects of class C to

support cloning, do the following:

– implement the Cloneable interface

– override the clone method with public access privileges

– call super.clone()

– Handle CloneNotSupported Exception.

• This will get you default cloning means shallow
copy.

Shallow Copies With Cloning
• We haǀeŶ’t yet said ǁhat the default ĐloŶe;Ϳ

method does.

• By default, clone makes a shallow copy of all iǀ’s iŶ a
class.

• Shallow copy means that all native datatype iǀ’s aƌe
Đopied iŶ ƌegulaƌ ǁay, ďut iǀ’s that aƌe oďjeĐts aƌe
not recursed upon – that is, references are copied.

• This is not what you typically want.

• Must override clone explicitly for Deep Copying.

Deep Copies
• For deep copies that recurse thƌough the oďjeĐt iǀ’s,

you have to do some more work.

• super.clone() is first called to clone the first level of
iǀ’s.

• RetuƌŶed ĐloŶed oďjeĐt’s oďjeĐt fields aƌe theŶ
accessed one by one and clone method is called for
each.

• See DeepClone.java example

Additional clone() properties
• Note that the following are typical, but not strictly

required:

– x.clone() != x;

– x.clone().getClass() == x.getClass();

– x.clone().equals(x);

• Finally, though no one really cares, Object
does not support clone();

toString() method
• The Object method

 String toString();

 is intended to return a readable textual representation
of the object upon which it is called. This is great for
debugging!

• Best way to think of this is using a print statement. If we
execute:

 System.out.println(someObject);

 we would like to see some meaningful info about
someObject, suĐh as ǀalues of iǀ’s, etĐ.

default toString()
• By default toString() prints total garbage that no one is

interested in
 getClass().getName() + '@' + Integer.toHexString(hashCode())

• By convention, print simple formatted list of field names
and values (or some important subset).

• The intent is not to overformat.

• Typically used for debugging.

• Always override toString()!

equals() method

• Recall that boolean == method compares when

applied to object compares references.

• That is, two object are the same if the point to the

same memory.

• Since java does not support operator overloading,

you cannot change this operator.

• However, the equals method of the Object class gives

you a chance to more meaningful compare objects of

a given class.

equals method, cont

• By default, equals(Object o) does exactly what

the == operator does – compare object

references.

• To override, simply override method with

version that does more meaningful test, ie

Đoŵpaƌes iǀ’s aŶd ƌetuƌŶs tƌue if eƋual, false
otherwise.

• See Equals.java example in course notes.

equals subtleties

• As with any method that you override, to do

so properly you must obey contracts that go

beyond interface matching.

• With equals, the extra conditions that must be

met are discussed on the next slide:

equals contract

 It is reflexive: for any reference value x, x.equals(x) should
return true.

 It is symmetric: for any reference values x and y,
x.equals(y) should return true if and only if y.equals(x)
returns true.

 It is transitive: for any reference values x, y, and z, if
x.equals(y) returns true and y.equals(z) returns true,
then x.equals(z) should return true.

 It is consistent: for any reference values x and y, multiple
invocations of x.equals(y) consistently return true or
consistently return false, provided no information used in
equals comparisons on the object is modified.

 For any non-null reference value x, x.equals(null) should
return false.

hashcode() method

• Java provides all objects with the ability to
generate a hash code.

• By default, the hashing algorithm is typically
based on an integer representation of the java
address.

• This method is supported for use with
java.util.Hashtable

• Will discuss Hashtable in detail during
Collections discussion.

Rules for overriding hashcode
• Whenever invoked on the same object more than

once, the hashCode method must return the same
integer, provided no information used in equals
comparisons on the object is modified.

• If two objects are equal according to the
equals(Object) method, then calling the hashCode
method on each of the two objects must produce
the same integer result.

• It is not required that if two objects are unequal
according to the equals(java.lang.Object) method,
then calling the hashCode method on each of the
two objects must produce distinct integer results.
However, the programmer should be aware that
producing distinct integer results for unequal
objects may improve the performance of
hashtables.

http://java.sun.com/j2se/1.4.1/docs/api/java/lang/Object.html
http://java.sun.com/j2se/1.4.1/docs/api/java/lang/Object.html
http://java.sun.com/j2se/1.4.1/docs/api/java/lang/Object.html

finalize() method

• Called as final step when Object is no longer used,
just before garbage collection

• Object version does nothing

• Since java has automatic garbage collection, finalize()
does not need to be overridden reclaim memory.

• Can be used to reclaim other resources – close
streams, database connections, threads.

• However, it is strongly recommended not to rely on
this for scarce resources.

• Be explicit and create own dispose method.

The Object Class
• Every java class has Object as its superclass and thus

inherits the Object methods.

• Object is a non-abstract class

• Many Object methods, however, have
iŵpleŵeŶtatioŶs that aƌeŶ’t paƌtiĐulaƌly useful iŶ
general

• In most cases it is a good idea to override these
methods with more useful versions.

• In other cases it is required if you want your objects
to correctly work with other class libraries.

Clone Method
• ReĐall that the ͞=͞ opeƌatoƌ siŵply Đopies OďjeĐt

references. e.g.,

>> “tudeŶt s1 = Ŷeǁ “tudeŶt;͞“ŵith ,͟ Jiŵ, ϯ.1ϯͿ;
>> Student s2 = s1;

>> s1.setNaŵe;͞Sahil͟Ϳ;
>> System.out.println(s2.getName());

 OP:- Sahil

• What if we want to actually make a copy of an Object?

• Most elegant way is to use the clone() method inherited
from Object.

Student s2 = (Student) s1.clone();

About clone() method
• First, note that the clone method is protected in the Object

class.

• This means that it is protected for subclasses as well.

• Hence, it cannot be called from within an Object of another
class and package.

• To use the clone method, you must override in your
subclass and upgrade visibility to public.

• Also, any class that uses clone must implement the
Cloneable interface.

• This is a ďit diffeƌeŶt fƌoŵ otheƌ iŶteƌfaĐes that ǁe’ǀe seeŶ.
• There are no methods; rather, it is used just as a marker of

your intent.

• The method that needs to be implemented is inherited
from Object.

Issue With clone() method
• Finally, clone throws a CloneNotSupportedException.

• This is thrown if your class is not marked Cloneable.

• This is all a little odd but you must handle this in subclass.

Steps For Cloning
• To reiterate, if you would like objects of class C to

support cloning, do the following:

– implement the Cloneable interface

– override the clone method with public access privileges

– call super.clone()

– Handle CloneNotSupported Exception.

• This will get you default cloning means shallow
copy.

Shallow Copies With Cloning
• We haǀeŶ’t yet said ǁhat the default ĐloŶe;Ϳ

method does.

• By default, clone makes a shallow copy of all iǀ’s iŶ a
class.

• Shallow copy means that all native datatype iǀ’s aƌe
Đopied iŶ ƌegulaƌ ǁay, ďut iǀ’s that aƌe oďjeĐts aƌe
not recursed upon – that is, references are copied.

• This is not what you typically want.

• Must override clone explicitly for Deep Copying.

Deep Copies
• For deep copies that recurse thƌough the oďjeĐt iǀ’s,

you have to do some more work.

• super.clone() is first called to clone the first level of
iǀ’s.

• RetuƌŶed ĐloŶed oďjeĐt’s oďjeĐt fields aƌe theŶ
accessed one by one and clone method is called for
each.

• See DeepClone.java example

Additional clone() properties
• Note that the following are typical, but not strictly

required:

– x.clone() != x;

– x.clone().getClass() == x.getClass();

– x.clone().equals(x);

• Finally, though no one really cares, Object
does not support clone();

toString() method
• The Object method

 String toString();

 is intended to return a readable textual representation
of the object upon which it is called. This is great for
debugging!

• Best way to think of this is using a print statement. If we
execute:

 System.out.println(someObject);

 we would like to see some meaningful info about
someObject, suĐh as ǀalues of iǀ’s, etĐ.

default toString()
• By default toString() prints total garbage that no one is

interested in
 getClass().getName() + '@' + Integer.toHexString(hashCode())

• By convention, print simple formatted list of field names
and values (or some important subset).

• The intent is not to overformat.

• Typically used for debugging.

• Always override toString()!

equals() method

• Recall that boolean == method compares when

applied to object compares references.

• That is, two object are the same if the point to the

same memory.

• Since java does not support operator overloading,

you cannot change this operator.

• However, the equals method of the Object class gives

you a chance to more meaningful compare objects of

a given class.

equals method, cont

• By default, equals(Object o) does exactly what

the == operator does – compare object

references.

• To override, simply override method with

version that does more meaningful test, ie

Đoŵpaƌes iǀ’s aŶd ƌetuƌŶs tƌue if eƋual, false
otherwise.

• See Equals.java example in course notes.

equals subtleties

• As with any method that you override, to do

so properly you must obey contracts that go

beyond interface matching.

• With equals, the extra conditions that must be

met are discussed on the next slide:

equals contract

 It is reflexive: for any reference value x, x.equals(x) should
return true.

 It is symmetric: for any reference values x and y,
x.equals(y) should return true if and only if y.equals(x)
returns true.

 It is transitive: for any reference values x, y, and z, if
x.equals(y) returns true and y.equals(z) returns true,
then x.equals(z) should return true.

 It is consistent: for any reference values x and y, multiple
invocations of x.equals(y) consistently return true or
consistently return false, provided no information used in
equals comparisons on the object is modified.

 For any non-null reference value x, x.equals(null) should
return false.

hashcode() method

• Java provides all objects with the ability to
generate a hash code.

• By default, the hashing algorithm is typically
based on an integer representation of the java
address.

• This method is supported for use with
java.util.Hashtable

• Will discuss Hashtable in detail during
Collections discussion.

Rules for overriding hashcode
• Whenever invoked on the same object more than

once, the hashCode method must return the same
integer, provided no information used in equals
comparisons on the object is modified.

• If two objects are equal according to the
equals(Object) method, then calling the hashCode
method on each of the two objects must produce
the same integer result.

• It is not required that if two objects are unequal
according to the equals(java.lang.Object) method,
then calling the hashCode method on each of the
two objects must produce distinct integer results.
However, the programmer should be aware that
producing distinct integer results for unequal
objects may improve the performance of
hashtables.

http://java.sun.com/j2se/1.4.1/docs/api/java/lang/Object.html
http://java.sun.com/j2se/1.4.1/docs/api/java/lang/Object.html
http://java.sun.com/j2se/1.4.1/docs/api/java/lang/Object.html

finalize() method

• Called as final step when Object is no longer used,
just before garbage collection

• Object version does nothing

• Since java has automatic garbage collection, finalize()
does not need to be overridden reclaim memory.

• Can be used to reclaim other resources – close
streams, database connections, threads.

• However, it is strongly recommended not to rely on
this for scarce resources.

• Be explicit and create own dispose method.

