
C++ Programming: From

Problem Analysis to Program

Design, Fifth Edition

Chapter 1: An Overview of Computers
and Programming Languages

Updated by: Malak Abdullah

Updated by: Malak Abdullah

The Evolution of Programming Languages

(cont'd.)

• High-level languages include Basic,
FORTRAN, COBOL, Pascal, C, C++, C#, and
Java

• Compiler: translates a program written in a
high-level language into a machine specific
language

C++ Programming: From Problem Analysis to Program Design, Fifth Edition 2

Updated by: Malak Abdullah

Processing a C++ Program

#include <iostream.h>

void main()

{

 cout << "My first C++ program." << endl;

 getch();

}

Sample Run:
My first C++ program.

C++ Programming: From Problem Analysis to Program Design, Fifth Edition 3

Updated by: Malak Abdullah

Processing a C++ Program

(cont'd.)

• To execute a C++ program:

− Use an editor to create a source program in
C++

− Preprocessor directives begin with # and are
processed by a the preprocessor

− Use the compiler to:
• Check that the program obeys the rules

• Translate into machine language (object program)

C++ Programming: From Problem Analysis to Program Design, Fifth Edition 4

Updated by: Malak Abdullah

Processing a C++ Program

(cont'd.)

• To execute a C++ program (cont'd.):

− Linker:

• Combines object program with other programs
provided by the SDK to create executable code

− Loader:

• Loads executable program into main memory

− The last step is to execute the program

C++ Programming: From Problem Analysis to Program Design, Fifth Edition 5

Updated by: Malak Abdullah

Processing a C++ Program

(cont'd.)

C++ Programming: From Problem Analysis to Program Design, Fifth Edition 6

Updated by: Malak Abdullah

Programming with the Problem Analysis–
Coding–Execution Cycle

• Programming is a process of problem solving

• One problem-solving technique:

− Analyze the problem

− Outline the problem requirements

− Design steps (algorithm) to solve the problem

• Algorithm:

− Step-by-step problem-solving process

− Solution achieved in finite amount of time

C++ Programming: From Problem Analysis to Program Design, Fifth Edition 7

Updated by: Malak Abdullah

The Problem Analysis–Coding–Execution

Cycle (cont’d.)

C++ Programming: From Problem Analysis to Program Design, Fifth Edition 8

Updated by: Malak Abdullah

The Problem Analysis–Coding–Execution

Cycle (cont'd.)

• Run code through compiler

• If compiler generates errors

− Look at code and remove errors

− Run code again through compiler

• If there are no syntax errors

− Compiler generates equivalent machine code

• Linker links machine code with system
resources

C++ Programming: From Problem Analysis to Program Design, Fifth Edition 9

Updated by: Malak Abdullah

The Problem Analysis–Coding–Execution

Cycle (cont'd.)

• Once compiled and linked, loader can place
program into main memory for execution

• The final step is to execute the program

• Compiler guarantees that the program follows
the rules of the language

− Does not guarantee that the program will run
correctly

C++ Programming: From Problem Analysis to Program Design, Fifth Edition 10

Updated by: Malak Abdullah

Example 1-1

• Design an algorithm to find the perimeter and
area of a rectangle

• The perimeter and area of the rectangle are
given by the following formulas:

 perimeter = 2 * (length + width)

 area = length * width

C++ Programming: From Problem Analysis to Program Design, Fifth Edition 11

Updated by: Malak Abdullah

Example 1-1 (cont'd.)

• Algorithm:

− Get length of the rectangle

− Get width of the rectangle

− Find the perimeter using the following
equation:

 perimeter = 2 * (length + width)

− Find the area using the following equation:

 area = length * width

C++ Programming: From Problem Analysis to Program Design, Fifth Edition 12

C++ Programming:

 From Problem Analysis

 to Program Design, Fourth Edition

Chapter 2: Basic Elements of C++

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 14

Objectives

In this chapter, you will:

• Become familiar with the basic components of
a C++ program, including functions, special
symbols, and identifiers

• Explore simple data types

• Discover how to use arithmetic operators

• Examine how a program evaluates arithmetic
expressions

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 15

Objectives (continued)

• Learn what an assignment statement is and
what it does

• Become familiar with the string data type

• Discover how to input data into memory using
input statements

• Become familiar with the use of increment
and decrement operators

• Examine ways to output results using output
statements

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 16

Objectives (continued)

• Learn how to use preprocessor directives and
why they are necessary

• Explore how to properly structure a program,
including using comments to document a
program

• Learn how to write a C++ program

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 17

The Basics of a C++ Program

• Function: collection of statements; when
executed, accomplishes something

− May be predefined or standard

• Syntax: rules that specify which statements
(instructions) are legal

• Programming language: a set of rules,
symbols, and special words

• Semantic rule: meaning of the instruction

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 18

Comments

• Comments are for the reader, not the compiler

• Two types:

− Single line
// This is a C++ program. It prints the sentence:

// Welcome to C++ Programming.

− Multiple line
/*

 You can include comments that can

 occupy several lines.

*/

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 19

Special Symbols

• Special symbols

+

-

*

/

.

;

?

,

<=

!=

==

>=

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 20

Reserved Words (Keywords)

• Reserved words, keywords, or word symbols

− Include:
• int
• float
• double
• char
• const
• void
• return

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 21

Identifiers

• Consist of letters, digits, and the underscore
character (_)

• Must begin with a letter or underscore

• C++ is case sensitive

− NUMBER is not the same as number

• Two predefined identifiers are cout and cin

• Unlike reserved words, predefined identifiers
may be redefined, but it is not a good idea

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 22

Identifiers (continued)

• The following are legal identifiers in C++:
− first

− conversion

− payRate

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 23

Whitespaces

• Every C++ program contains whitespaces

− Include blanks, tabs, and newline characters

• Used to separate special symbols, reserved
words, and identifiers

• Proper utilization of whitespaces is important

− Can be used to make the program readable

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 24

Data Types

• Data type: set of values together with a set of
operations

• C++ data types fall into three categories:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 25

Simple Data Types

• Three categories of simple data

− Integral: integers (numbers without a decimal)

− Floating-point: decimal numbers

− Enumeration type: user-defined data type

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 26

Simple Data Types (continued)

• Integral data types are further classified into
nine categories:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 27

Simple Data Types (continued)

• Different compilers may allow different ranges
of values

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 28

int Data Type

• Examples:

-6728

0

78

+763

• Positive integers do not need a + sign

• No commas are used within an integer

− Commas are used for separating items in a list

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 29

bool Data Type

• bool type

− Two values: true and false

− Manipulate logical (Boolean) expressions

• true and false are called logical values

• bool, true, and false are reserved words

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 30

char Data Type

• The smallest integral data type

• Used for characters: letters, digits, and special
symbols

• Each character is enclosed in single quotes

− 'A', 'a', '0', '*', '+', '$', '&'

• A blank space is a character and is written ' ',

with a space left between the single quotes

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 31

• C++ uses scientific notation to represent real
numbers (floating-point notation)

Floating-Point Data Types

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 32

Floating-Point Data Types

(continued)

− float: represents any real number

• Range: -3.4E+38 to 3.4E+38 (four bytes)

− double: represents any real number

• Range: -1.7E+308 to 1.7E+308 (eight bytes)

− On most newer compilers, data types double
and long double are same

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 33

Floating-Point Data Types

(continued)

• Maximum number of significant digits
(decimal places) for float values is 6 or 7

• Maximum number of significant digits for
double is 15

• Precision: maximum number of significant
digits

− Float values are called single precision

− Double values are called double precision

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 34

Arithmetic Operators and Operator

Precedence

• C++ arithmetic operators:

− + addition

− - subtraction

− * multiplication

− / division

− % modulus operator

• +, -, *, and / can be used with integral and
floating-point data types

• Operators can be unary or binary

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 35

Order of Precedence

• All operations inside of () are evaluated first

• *, /, and % are at the same level of
precedence and are evaluated next

• + and – have the same level of precedence
and are evaluated last

• When operators are on the same level

− Performed from left to right (associativity)

• 3 * 7 - 6 + 2 * 5 / 4 + 6 means
(((3 * 7) – 6) + ((2 * 5) / 4)) + 6

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 36

Expressions

• If all operands are integers

− Expression is called an integral expression

• Yields an integral result

• Example: 2 + 3 * 5

• If all operands are floating-point

− Expression is called a floating-point
expression

• Yields a floating-point result

• Example: 12.8 * 17.5 - 34.50

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 37

Mixed Expressions

• Mixed expression:

− Has operands of different data types

− Contains integers and floating-point

• Examples of mixed expressions:

2 + 3.5

6 / 4 + 3.9

5.4 * 2 – 13.6 + 18 / 2

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 38

Mixed Expressions (continued)

• Evaluation rules:

− If operator has same types of operands

• Evaluated according to the type of the operands

− If operator has both types of operands

• Integer is changed to floating-point

• Operator is evaluated

• Result is floating-point

− Entire expression is evaluated according to
precedence rules

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 39

Type Conversion (Casting)

• Implicit type coercion: when value of one type
is automatically changed to another type

• Cast operator: provides explicit type
conversion
static_cast<dataTypeName>(expression)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 40

Type Conversion (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 41

string Type

• Programmer-defined type supplied in
ANSI/ISO Standard C++ library

• Sequence of zero or more characters

• Enclosed in double quotation marks

• Null: a string with no characters

• Each character has relative position in string

− Position of first character is 0

• Length of a string is number of characters in it

− Example: length of "William Jacob" is 13

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 42

Input

• Data must be loaded into main memory
before it can be manipulated

• Storing data in memory is a two-step process:

− Instruct computer to allocate memory

− Include statements to put data into memory

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 43

Allocating Memory with Constants

and Variables

• Named constant: memory location whose
content can’t change during execution

• The syntax to declare a named constant is:

• In C++, const is a reserved word

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 44

Allocating Memory with Constants

and Variables (continued)

• Variable: memory location whose content
may change during execution

• The syntax to declare a named constant is:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 45

Putting Data into Variables

• Ways to place data into a variable:

− Use C++’s assignment statement
− Use input (read) statements

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 46

Assignment Statement

• The assignment statement takes the form:

• Expression is evaluated and its value is
assigned to the variable on the left side

• In C++, = is called the assignment operator

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 47

Assignment Statement (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 48

Saving and Using the Value of an

Expression

• To save the value of an expression:

− Declare a variable of the appropriate data type

− Assign the value of the expression to the
variable that was declared

• Use the assignment statement

• Wherever the value of the expression is
needed, use the variable holding the value

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 49

Declaring & Initializing Variables

• Variables can be initialized when declared:

 int first=13, second=10;

 char ch=' ';

 double x=12.6;

• All variables must be initialized before they
are used

− But not necessarily during declaration

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 50

Input (Read) Statement

• cin is used with >> to gather input

• The stream extraction operator is >>

• For example, if miles is a double variable

 cin >> miles;

− Causes computer to get a value of type
double

− Places it in the variable miles

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 51

Input (Read) Statement (continued)

• Using more than one variable in cin allows

more than one value to be read at a time

• For example, if feet and inches are
variables of type int, a statement such as:

 cin >> feet >> inches;

− Inputs two integers from the keyboard

− Places them in variables feet and inches

respectively

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 52

Input (Read) Statement (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 53

Variable Initialization

• There are two ways to initialize a variable:

int feet;

− By using the assignment statement
feet = 35;

− By using a read statement

cin >> feet;

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 54

Increment & Decrement Operators

• Increment operator: increment variable by 1

− Pre-increment: ++variable

− Post-increment: variable++

• Decrement operator: decrement variable by 1

− Pre-decrement: --variable

− Post-decrement: variable—
• What is the difference between the following?

 x = 5;

y = ++x;

x = 5;

y = x++;

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 55

Output

• The syntax of cout and << is:

− Called an output statement

• The stream insertion operator is <<

• Expression evaluated and its value is printed
at the current cursor position on the screen

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 56

Output (continued)

• A manipulator is used to format the output

− Example: endl causes insertion point to move

to beginning of next line

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 57

Output (continued)

• The new line character is '\n'
− May appear anywhere in the string

cout << "Hello there.";

cout << "My name is James.";

• Output:
 Hello there.My name is James.

cout << "Hello there.\n";

cout << "My name is James.";

• Output :
 Hello there.

 My name is James.

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 58

Output (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 59

Preprocessor Directives

• C++ has a small number of operations

• Many functions and symbols needed to run a
C++ program are provided as collection of
libraries

• Every library has a name and is referred to by a
header file

• Preprocessor directives are commands
supplied to the preprocessor

• All preprocessor commands begin with #

• No semicolon at the end of these commands

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 60

Preprocessor Directives

(continued)

• Syntax to include a header file:

• For example:

 #include <iostream>

− Causes the preprocessor to include the
header file iostream in the program

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 61

namespace and Using cin and

cout in a Program

• cin and cout are declared in the header file
iostream, but within std namespace

• To use cin and cout in a program, use the

following two statements:

 #include <iostream>

 using namespace std;

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 62

Using the string Data Type in a

Program

• To use the string type, you need to access
its definition from the header file string

• Include the following preprocessor directive:

 #include <string>

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 63

Creating a C++ Program

• C++ program has two parts:

− Preprocessor directives

− The program

• Preprocessor directives and program
statements constitute C++ source code (.cpp)

• Compiler generates object code (.obj)

• Executable code is produced and saved in a
file with the file extension .exe

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 64

Creating a C++ Program

(continued)

• A C++ program is a collection of functions,
one of which is the function main

• The first line of the function main is called the
heading of the function:
int main()

• The statements enclosed between the curly
braces ({ and }) form the body of the function

− Contains two types of statements:
• Declaration statements

• Executable statements

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 65

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 66

Creating a C++ Program

(continued)

Sample Run:

Line 9: firstNum = 18

Line 10: Enter an integer: 15

Line 13: secondNum = 15

Line 15: The new value of firstNum = 60

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 67

Program Style and Form

• Every C++ program has a function main

• It must also follow the syntax rules

• Other rules serve the purpose of giving
precise meaning to the language

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 68

Syntax

• Errors in syntax are found in compilation
int x; //Line 1

int y //Line 2: error

double z; //Line 3

y = w + x; //Line 4: error

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 69

Use of Blanks

• In C++, you use one or more blanks to
separate numbers when data is input

• Used to separate reserved words and
identifiers from each other and from other
symbols

• Must never appear within a reserved word or
identifier

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 70

Use of Semicolons, Brackets, and

Commas

• All C++ statements end with a semicolon

− Also called a statement terminator

• { and } are not C++ statements

• Commas separate items in a list

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 71

Semantics

• Possible to remove all syntax errors in a
program and still not have it run

• Even if it runs, it may still not do what you
meant it to do

• For example,

2 + 3 * 5 and (2 + 3) * 5

 are both syntactically correct expressions, but
have different meanings

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 72

Naming Identifiers

• Identifiers can be self-documenting:

− CENTIMETERS_PER_INCH

• Avoid run-together words :

− annualsale

− Solution:

• Capitalize the beginning of each new word
• annualSale

• Inserting an underscore just before a new word
• annual_sale

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 73

Prompt Lines

• Prompt lines: executable statements that
inform the user what to do

cout << "Please enter a number between 1 and 10 and "

 << "press the return key" << endl;

cin >> num;

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 74

Documentation

• A well-documented program is easier to
understand and modify

• You use comments to document programs

• Comments should appear in a program to:

− Explain the purpose of the program

− Identify who wrote it

− Explain the purpose of particular statements

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 75

Form and Style

• Consider two ways of declaring variables:

− Method 1

 int feet, inch;

 double x, y;

− Method 2

 int a,b;double x,y;

• Both are correct; however, the second is hard
to read

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 76

More on Assignment Statements

• C++ has special assignment statements
called compound assignments

+=, -=, *=, /=, and %=

• Example:

 x *= y;

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 77

Programming Example:

Convert Length

• Write a program that takes as input a given
length expressed in feet and inches

− Convert and output the length in centimeters

• Input: length in feet and inches

• Output: equivalent length in centimeters

• Lengths are given in feet and inches

• Program computes the equivalent length in
centimeters

• One inch is equal to 2.54 centimeters

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 78

Programming Example: Convert

Length (continued)

• Convert the length in feet and inches to all
inches:

− Multiply the number of feet by 12

− Add given inches

• Use the conversion formula (1 inch = 2.54
centimeters) to find the equivalent length in
centimeters

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 79

Programming Example: Convert

Length (continued)

• The algorithm is as follows:

− Get the length in feet and inches

− Convert the length into total inches

− Convert total inches into centimeters

− Output centimeters

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 80

Programming Example: Variables

and Constants

• Variables
int feet; //variable to hold given feet

int inches; //variable to hold given inches

int totalInches; //variable to hold total inches

double centimeters; //variable to hold length in

 //centimeters

• Named Constant

const double CENTIMETERS_PER_INCH = 2.54;

const int INCHES_PER_FOOT = 12;

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 81

Programming Example: Main

Algorithm

• Prompt user for input

• Get data

• Echo the input (output the input)

• Find length in inches

• Output length in inches

• Convert length to centimeters

• Output length in centimeters

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 82

Programming Example: Putting It

Together

• Program begins with comments

• System resources will be used for I/O

• Use input statements to get data and output
statements to print results

• Data comes from keyboard and the output
will display on the screen

• The first statement of the program, after
comments, is preprocessor directive to
include header file iostream

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 83

Programming Example: Putting It

Together (continued)

• Two types of memory locations for data
manipulation:

− Named constants

• Usually put before main

− Variables

• This program has only one function (main),

which will contain all the code

• The program needs variables to manipulate
data, which are declared in main

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 84

Programming Example: Body of

the Function

• The body of the function main has the

following form:

 int main ()

 {

 declare variables

 statements

 return 0;

 }

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 85

Programming Example: Writing a

Complete Program

• Begin the program with comments for
documentation

• Include header files

• Declare named constants, if any

• Write the definition of the function main

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 86

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 87

Programming Example: Sample

Run

Enter two integers, one for feet, one for inches: 15 7

The numbers you entered are 15 for feet and 7 for inches.

The total number of inches = 187

The number of centimeters = 474.98

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 88

Summary

• C++ program: collection of functions where
each program has a function called main

• Identifier consists of letters, digits, and
underscores, and begins with letter or
underscore

• The arithmetic operators in C++ are addition
(+), subtraction (-),multiplication (*), division (/),
and modulus (%)

• Arithmetic expressions are evaluated using the
precedence associativity rules

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 89

Summary (continued)

• All operands in an integral expression are
integers and all operands in a floating-point
expression are decimal numbers

• Mixed expression: contains both integers and
decimal numbers

• Use the cast operator to explicitly convert
values from one data type to another

• A named constant is initialized when declared

• All variables must be declared before used

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 90

Summary (continued)

• Use cin and stream extraction operator >> to

input from the standard input device

• Use cout and stream insertion operator <<

to output to the standard output device

• Preprocessor commands are processed
before the program goes through the
compiler

• A file containing a C++ program usually ends
with the extension .cpp

C++ Programming:

 From Problem Analysis

 to Program Design, Fourth Edition

Chapter 3: Input/Output

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 92

Objectives

In this chapter, you will:

• Learn what a stream is and examine input
and output streams

• Explore how to read data from the standard
input device

• Learn how to use predefined functions in a
program

• Explore how to use the input stream functions
get, ignore, putback, and peek

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 93

Objectives (continued)

• Become familiar with input failure

• Learn how to write data to the standard
output device

• Discover how to use manipulators in a
program to format output

• Learn how to perform input and output
operations with the string data type

• Become familiar with file input and output

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 94

I/O Streams and Standard I/O

Devices

• I/O: sequence of bytes (stream of bytes) from
source to destination

− Bytes are usually characters, unless program
requires other types of information

• Stream: sequence of characters from source
to destination

• Input stream: sequence of characters from an
input device to the computer

• Output stream: sequence of characters from
the computer to an output device

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 95

I/O Streams and Standard I/O

Devices (continued)

• Use iostream header file to extract (receive)

data from keyboard and send output to the
screen

− Contains definitions of two data types:
• istream - input stream

• ostream - output stream

− Has two variables:
• cin - stands for common input

• cout - stands for common output

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 96

I/O Streams and Standard I/O

Devices (continued)

• To use cin and cout, the preprocessor
directive #include <iostream> must be

used

• Variable declaration is similar to:

− istream cin;

− ostream cout;

• Input stream variables: type istream

• Output stream variables: type ostream

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 97

cin and the Extraction Operator

>>

• The syntax of an input statement using cin
and the extraction operator >> is:

• The extraction operator >> is binary

− Left-side operand is an input stream variable

• Example: cin

− Right-side operand is a variable

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 98

cin and the Extraction Operator

>> (continued)

• No difference between a single cin with
multiple variables and multiple cin

statements with one variable

• When scanning, >> skips all whitespace

− Blanks and certain nonprintable characters

• >> distinguishes between character 2 and
number 2 by the right-side operand of >>

− If type char or int (or double), the 2 is
treated as a character or as a number 2

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 99

cin and the Extraction Operator

>> (continued)

• Entering a char value into an int or double

variable causes serious errors, called input
failure

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 100

cin and the Extraction Operator

>> (continued)

• When reading data into a char variable

− >> skips leading whitespace, finds and stores

only the next character

− Reading stops after a single character

• To read data into an int or double variable

− >> skips leading whitespace, reads + or - sign

(if any), reads the digits (including decimal)

− Reading stops on whitespace non-digit
character

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 101

cin and the Extraction Operator

>> (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 103

Using Predefined Functions in a

Program

• Function (subprogram): set of instructions

− When activated, it accomplishes a task

• main executes when a program is run

• Other functions execute only when called

• C++ includes a wealth of functions

− Predefined functions are organized as a
collection of libraries called header files

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 104

Using Predefined Functions in a

Program (continued)

• Header file may contain several functions

• To use a predefined function, you need the
name of the appropriate header file

− You also need to know:

• Function name

• Number of parameters required

• Type of each parameter

• What the function is going to do

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 105

Using Predefined Functions in a

Program (continued)

• To use pow (power), include cmath

− Two numeric parameters

− Syntax: pow(x,y) = xy

• x and y are the arguments or parameters

− In pow(2,3), the parameters are 2 and 3

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 107

Using Predefined Functions in a

Program (continued)

Sample Run:
Line 1: 2 to the power of 6 = 64

Line 4: 12.5 to the power of 3 = 1953.13

Line 5: Square root of 24 = 4.89898

Line 7: u = 181.019

Line 9: Length of str = 20

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 108

cin and the get Function

• The get function

− Inputs next character (including whitespace)

− Stores in memory location indicated by its
argument

• The syntax of cin and the get function:

 varChar

− Is a char variable

− Is the argument (parameter) of the function

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 109

cin and the ignore Function

• ignore: discards a portion of the input

• The syntax to use the function ignore is:

 intExp is an integer expression

 chExp is a char expression

• If intExp is a value m, the statement says to
ignore the next m characters or all characters
until the character specified by chExp

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 110

putback and peek Functions

• putback function

− Places previous character extracted by the
get function from an input stream back to that

stream

• peek function

− Returns next character from the input stream

− Does not remove the character from that
stream

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 111

putback and peek Functions

(continued)

• The syntax for putback:

− istreamVar: an input stream variable (cin)

− ch is a char variable

• The syntax for peek:

− istreamVar: an input stream variable (cin)

− ch is a char variable

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 112

The Dot Notation Between I/O

Stream Variables and I/O Functions

• In the statement

 cin.get(ch);

 cin and get are two separate identifiers

separated by a dot

• Dot separates the input stream variable name
from the member, or function, name

• In C++, dot is the member access operator

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 113

Input Failure

• Things can go wrong during execution

• If input data does not match corresponding
variables, program may run into problems

• Trying to read a letter into an int or double

variable will result in an input failure

• If an error occurs when reading data

− Input stream enters the fail state

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 114

The clear Function

• Once in a fail state, all further I/O statements
using that stream are ignored

• The program continues to execute with
whatever values are stored in variables

− This causes incorrect results

• The clear function restores input stream to

a working state

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 115

Output and Formatting Output

• Syntax of cout when used with <<

• Expression is evaluated

• Value is printed

• Manipulator is used to format the output

− Example: endl

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 116

setprecision Manipulator

• Syntax:

• Outputs decimal numbers with up to n

decimal places

• Must include the header file iomanip:

− #include <iomanip>

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 117

fixed Manipulator

• fixed outputs floating-point numbers in a

fixed decimal format

− Example: cout << fixed;

− Disable by using the stream member function
unsetf

• Example: cout.unsetf(ios::fixed);

• The manipulator scientific is used to

output floating-point numbers in scientific
format

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 118

showpoint Manipulator

• showpoint forces output to show the

decimal point and trailing zeros

• Examples:

− cout << showpoint;

− cout << fixed << showpoint;

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 119

setw

• Outputs the value of an expression in specific
columns

− cout << setw(5) << x << endl;

• If number of columns exceeds the number of
columns required by the expression

− Output of the expression is right-justified

− Unused columns to the left are filled with
spaces

• Must include the header file iomanip

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 120

Additional Output Formatting

Tools

• Additional formatting tools that give you more
control over your output:

− setfill manipulator

− left and right manipulators

− unsetf manipulator

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 121

setfill Manipulator

• Output stream variables can use setfill to

fill unused columns with a character

• Example:

− cout << setfill('#');

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 122

left and right Manipulators

• left: left-justifies the output

• Disable left by using unsetf

• right: right-justifies the output

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 123

Types of Manipulators

• Two types of manipulators:

− With parameters

− Without parameters

• Parameterized: require iomanip header

− setprecision, setw, and setfill

• Nonparameterized: require iostream
header

− endl, fixed, showpoint, left, and flush

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 124

Input/Output and the string
Type

• An input stream variable (cin) and >>

operator can read a string into a variable of
the data type string

• Extraction operator

− Skips any leading whitespace characters and
reading stops at a whitespace character

• The function getline

− Reads until end of the current line

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 125

File Input/Output

• File: area in secondary storage to hold info

• File I/O is a five-step process

1. Include fstream header

2. Declare file stream variables

3. Associate the file stream variables with the
input/output sources

4. Use the file stream variables with >>, <<, or

other input/output functions

5. Close the files

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 126

Programming Example: Movie

Ticket Sale and Donation to Charity

• A theater owner agrees to donate a portion of
gross ticket sales to a charity

• The program will prompt the user to input:

− Movie name

− Adult ticket price

− Child ticket price

− Number of adult tickets sold

− Number of child tickets sold

− Percentage of gross amount to be donated

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 127

Programming Example: I/O

• Inputs: movie name, adult and child ticket
price, # adult and child tickets sold, and
percentage of the gross to be donated

• Program output:

-*

Movie Name: Journey to Mars

Number of Tickets Sold: 2650

Gross Amount: $ 9150.00

Percentage of Gross Amount Donated: 10.00%

Amount Donated: $ 915.00

Net Sale: $ 8235.00

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 128

Programming Example: Problem

Analysis

• The program needs to:

1. Get the movie name

2. Get the price of an adult ticket price

3. Get the price of a child ticket price

4. Get the number of adult tickets sold

5. Get the number of child tickets sold

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 129

Programming Example: Problem

Analysis (continued)

6. Calculate the gross amount
 grossAmount = adultTicketPrice *

noOfAdultTicketsSold + childTicketPrice *

noOfChildTicketsSold;

7. Calculate the amount donated to the charity
 amountDonated = grossAmount *

percentDonation / 100;

8. Calculate the net sale amount
 netSale = grossAmount – amountDonated;

9. Output the results

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 130

Programming Example: Variables

string movieName;

double adultTicketPrice;

double childTicketPrice;

int noOfAdultTicketsSold;

int noOfChildTicketsSold;

double percentDonation;

double grossAmount;

double amountDonated;

double netSaleAmount;

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 131

Programming Example:

Formatting Output

• First column is left-justified

− When printing a value in the first column, use
left

• Numbers in second column are right-justified

− Before printing a value in the second column,
use right

• Use setfill to fill the empty space between

the first and second columns with dots

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 132

Programming Example:

Formatting Output (continued)

• In the lines showing gross amount, amount
donated, and net sale amount

− Use blanks to fill space between the $ sign

and the number

• Before printing the dollar sign

− Use setfill to set the filling character to

blank

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 133

Programming Example: Main

Algorithm

1. Declare variables

2. Set the output of the floating-point to:

− Two decimal places

− Fixed

− Decimal point and trailing zeros

3. Prompt the user to enter a movie name

4. Input movie name using getline because

it might contain spaces

5. Prompt user for price of an adult ticket

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 134

Programming Example: Main

Algorithm (continued)

6. Input price of an adult ticket

7. Prompt user for price of a child ticket

8. Input price of a child ticket

9. Prompt user for the number of adult tickets
sold

10. Input number of adult tickets sold

11.Prompt user for number of child tickets sold

12. Input the number of child tickets sold

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 135

Programming Example: Main

Algorithm (continued)

13.Prompt user for percentage of the gross
amount donated

14. Input percentage of the gross amount
donated

15.Calculate the gross amount

16.Calculate the amount donated

17.Calculate the net sale amount

18.Output the results

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 136

Summary

• Stream: infinite sequence of characters from
a source to a destination

• Input stream: from a source to a computer

• Output stream: from a computer to a
destination

• cin: common input

• cout: common output

• To use cin and cout, include iostream

header

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 137

Summary (continued)

• get reads data character-by-character

• putback puts last character retrieved by get

back to the input stream

• ignore skips data in a line

• peek returns next character from input

stream, but does not remove it

• Attempting to read invalid data into a variable
causes the input stream to enter the fail state

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 138

Summary (continued)

• The manipulators setprecision, fixed,
showpoint, setw, setfill, left, and
right can be used for formatting output

• Include iomanip for the manipulators
setprecision, setw, and setfill

• File: area in secondary storage to hold info

• Header fstream contains the definitions of
ifstream and ofstream

C++ Programming:

 From Problem Analysis

 to Program Design, Fourth Edition

Chapter 4: Control Structures I (Selection)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 140

Objectives

In this chapter, you will:

• Learn about control structures

• Examine relational and logical operators

• Explore how to form and evaluate logical
(Boolean) expressions

• Discover how to use the selection control
structures if, if...else, and switch in a

program

• Learn to use the assert function to terminate a

program

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 141

Control Structures

• A computer can proceed:

− In sequence

− Selectively (branch) - making a choice

− Repetitively (iteratively) - looping

• Some statements are executed only if certain
conditions are met

• A condition is met if it evaluates to true

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 142

Control Structures (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 143

Relational Operators

• A condition is represented by a logical
(Boolean) expression that can be true or
false

• Relational operators:

− Allow comparisons

− Require two operands (binary)

− Evaluate to true or false

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 144

Relational Operators (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 145

Relational Operators and Simple

Data Types

• You can use the relational operators with all
three simple data types:

− 8 < 15 evaluates to true

− 6 != 6 evaluates to false

− 2.5 > 5.8 evaluates to false

− 5.9 <= 7.5 evaluates to true

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 146

Comparing Characters

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 147

Relational Operators and the

string Type

• Relational operators can be applied to strings

• Strings are compared character by character,
starting with the first character

• Comparison continues until either a mismatch
is found or all characters are found equal

• If two strings of different lengths are compared
and the comparison is equal to the last
character of the shorter string

− The shorter string is less than the larger string

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 148

Relational Operators and the

string Type (continued)

• Suppose we have the following declarations:

string str1 = "Hello";

string str2 = "Hi";

string str3 = "Air";

string str4 = "Bill";

string str4 = "Big";

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 149

Relational Operators and the

string Type (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 150

Relational Operators and the

string Type (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 151

Relational Operators and the

string Type (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 152

Logical (Boolean) Operators and

Logical Expressions

• Logical (Boolean) operators enable you to
combine logical expressions

unary

binary

binary

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 153

Logical (Boolean) Operators and

Logical Expressions (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 156

Order of Precedence

• Relational and logical operators are
evaluated from left to right

• The associativity is left to right

• Parentheses can override precedence

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 157

Order of Precedence (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 158

Order of Precedence (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 159

Order of Precedence (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 160

Order of Precedence (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 161

Short-Circuit Evaluation

• Short-circuit evaluation: evaluation of a logical
expression stops as soon as the value of the
expression is known

• Example:

 (age >= 21) || (x == 5) //Line 1

 (grade == 'A') && (x >= 7) //Line 2

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 162

int Data Type and Logical

(Boolean) Expressions

• Earlier versions of C++ did not provide built-in
data types that had Boolean values

• Logical expressions evaluate to either 1 or 0

− The value of a logical expression was stored
in a variable of the data type int

• You can use the int data type to manipulate

logical (Boolean) expressions

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 163

The bool Data Type and Logical

(Boolean) Expressions

• The data type bool has logical (Boolean)
values true and false

• bool, true, and false are reserved words

• The identifier true has the value 1

• The identifier false has the value 0

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 164

Logical (Boolean) Expressions

• Logical expressions can be unpredictable

• The following expression appears to
represent a comparison of 0, num, and 10:

 0 <= num <= 10

• It always evaluates to true because 0 <=
num evaluates to either 0 or 1, and 0 <= 10
is true and 1 <= 10 is true

• A correct way to write this expression is:

 0 <= num && num <= 10

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 165

Selection: if and if...else

• One-Way Selection

• Two-Way Selection

• Compound (Block of) Statements

• Multiple Selections: Nested if

• Comparing if...else Statements with a
Series of if Statements

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 166

Selection: if and if...else

(continued)

• Using Pseudocode to Develop, Test, and
Debug a Program

• Input Failure and the if Statement

• Confusion Between the Equality Operator
(==) and the Assignment Operator (=)

• Conditional Operator (?:)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 167

One-Way Selection

• The syntax of one-way selection is:

• The statement is executed if the value of the
expression is true

• The statement is bypassed if the value is
false; program goes to the next statement

• if is a reserved word

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 168

One-Way Selection (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 169

One-Way Selection (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 171

One-Way Selection (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 172

Two-Way Selection

• Two-way selection takes the form:

• If expression is true, statement1 is
executed; otherwise, statement2 is

executed

− statement1 and statement2 are any C++

statements

• else is a reserved word

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 173

Two-Way Selection (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 174

Two-Way Selection (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 175

Two-Way Selection (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 176

Compound (Block of) Statement

• Compound statement (block of statements):

• A compound statement is a single statement

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 177

Compound (Block of) Statement

(continued)

if (age > 18)

{

 cout << "Eligible to vote." << endl;

 cout << "No longer a minor." << endl;

}

else

{

 cout << "Not eligible to vote." << endl;

 cout << "Still a minor." << endl;

}

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 178

Multiple Selections: Nested if

• Nesting: one control statement in another

• An else is associated with the most recent
if that has not been paired with an else

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 180

Multiple Selections: Nested if

(continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 181

Comparing if…else Statements

with a Series of if Statements

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 182

Using Pseudocode to Develop,

Test, and Debug a Program

• Pseudocode (pseudo): provides a useful
means to outline and refine a program before
putting it into formal C++ code

• You must first develop a program using paper
and pencil

• On paper, it is easier to spot errors and
improve the program

− Especially with large programs

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 183

Input Failure and the if Statement

• If input stream enters a fail state

− All subsequent input statements associated
with that stream are ignored

− Program continues to execute

− May produce erroneous results

• Can use if statements to check status of

input stream

• If stream enters the fail state, include
instructions that stop program execution

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 184

Confusion Between == and =

• C++ allows you to use any expression that
can be evaluated to either true or false as
an expression in the if statement:
if (x = 5)

 cout << "The value is five." << endl;

• The appearance of = in place of ==
resembles a silent killer

− It is not a syntax error

− It is a logical error

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 185

Conditional Operator (?:)

• Conditional operator (?:) takes three arguments

− Ternary operator

• Syntax for using the conditional operator:
 expression1 ? expression2 : expression3

• If expression1 is true, the result of the
conditional expression is expression2

− Otherwise, the result is expression3

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 186

switch Structures

• switch structure: alternate
to if-else

• switch (integral)
expression is evaluated first

• Value of the expression
determines which
corresponding action is
taken

• Expression is sometimes
called the selector

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 188

switch Structures (continued)

• One or more statements may follow a case
label

• Braces are not needed to turn multiple
statements into a single compound statement

• The break statement may or may not appear

after each statement

• switch, case, break, and default are

reserved words

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 190

Terminating a Program with the

assert Function

• Certain types of errors that are very difficult to
catch can occur in a program

− Example: division by zero can be difficult to
catch using any of the programming
techniques examined so far

• The predefined function, assert, is useful in

stopping program execution when certain
elusive errors occur

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 191

The assert Function (continued)

• Syntax:

 expression is any logical expression

• If expression evaluates to true, the next
statement executes

• If expression evaluates to false, the
program terminates and indicates where in
the program the error occurred

• To use assert, include cassert header file

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 192

The assert Function (continued)

• assert is useful for enforcing programming

constraints during program development

• After developing and testing a program,
remove or disable assert statements

• The preprocessor directive #define
NDEBUG must be placed before the directive
#include <cassert> to disable the assert

statement

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 193

Programming Example: Cable

Company Billing

• This programming example calculates a
customer’s bill for a local cable company

• There are two types of customers:

− Residential

− Business

• Two rates for calculating a cable bill:

− One for residential customers

− One for business customers

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 194

Programming Example: Rates

• For residential customer:
− Bill processing fee: $4.50
− Basic service fee: $20.50
− Premium channel: $7.50 per channel

• For business customer:
− Bill processing fee: $15.00
− Basic service fee: $75.00 for first 10

connections and $5.00 for each additional
connection

− Premium channel cost: $50.00 per channel for
any number of connections

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 195

Programming Example:

Requirements

• Ask user for account number and customer
code

• Assume R or r stands for residential
customer and B or b stands for business

customer

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 196

Programming Example: Input and

Output

• Input:

− Customer account number

− Customer code

− Number of premium channels

− For business customers, number of basic
service connections

• Output:

− Customer’s account number
− Billing amount

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 197

Programming Example: Program

Analysis

• Purpose: calculate and print billing amount

• Calculating billing amount requires:

− Customer for whom the billing amount is
calculated (residential or business)

− Number of premium channels to which the
customer subscribes

• For a business customer, you need:

− Number of basic service connections

− Number of premium channels

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 198

Programming Example: Program

Analysis (continued)

• Data needed to calculate the bill, such as bill
processing fees and the cost of a premium
channel, are known quantities

• The program should print the billing amount
to two decimal places

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 199

Programming Example: Algorithm

Design

• Set precision to two decimal places

• Prompt user for account number and
customer type

• If customer type is R or r

− Prompt user for number of premium channels

− Compute and print the bill

• If customer type is B or b

− Prompt user for number of basic service
connections and number of premium channels

− Compute and print the bill

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 200

Programming Example: Variables

and Named Constants

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 201

Programming Example: Formulas

Billing for residential customers:

amountDue = RES_BILL_PROC_FEES +

 RES_BASIC_SERV_COST

 + numOfPremChannels *

 RES_COST_PREM_CHANNEL;

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 202

Programming Example: Formulas

(continued)

Billing for business customers:

if (numOfBasicServConn <= 10)

 amountDue = BUS_BILL_PROC_FEES +

 BUS_BASIC_SERV_COST

 + numOfPremChannels *

 BUS_COST_PREM_CHANNEL;

else

 amountDue = BUS_BILL_PROC_FEES +

 BUS_BASIC_SERV_COST

 + (numOfBasicServConn - 10)

 * BUS_BASIC_CONN_COST

 + numOfPremChannels *

 BUS_COST_PREM_CHANNEL;

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 203

Programming Example: Main

Algorithm

1. Output floating-point numbers in fixed
decimal with decimal point and trailing zeros

• Output floating-point numbers with two
decimal places and set the precision to two
decimal places

2. Prompt user to enter account number

3. Get customer account number

4. Prompt user to enter customer code

5. Get customer code

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 204

Programming Example: Main

Algorithm (continued)

6. If the customer code is r or R,

− Prompt user to enter number of premium
channels

− Get the number of premium channels

− Calculate the billing amount

− Print account number and billing amount

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 205

Programming Example: Main

Algorithm (continued)

7. If customer code is b or B,

− Prompt user to enter number of basic service
connections

− Get number of basic service connections

− Prompt user to enter number of premium
channels

− Get number of premium channels

− Calculate billing amount

− Print account number and billing amount

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 206

Programming Example: Main

Algorithm (continued)

8. If customer code is other than r, R, b, or B,

output an error message

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 207

Summary

• Control structures alter normal control flow

• Most common control structures are selection
and repetition

• Relational operators: ==, <, <=, >, >=, !=

• Logical expressions evaluate to 1 (true) or 0
(false)

• Logical operators: ! (not), && (and), || (or)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 208

Summary (continued)

• Two selection structures: one-way selection
and two-way selection

• The expression in an if or if...else

structure is usually a logical expression

• No stand-alone else statement in C++

− Every else has a related if

• A sequence of statements enclosed between
braces, { and }, is called a compound

statement or block of statements

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 209

Summary (continued)

• Using assignment in place of the equality
operator creates a semantic error

• switch structure handles multiway selection

• break statement ends switch statement

• Use assert to terminate a program if certain

conditions are not met

C++ Programming:

 From Problem Analysis

 to Program Design, Fourth Edition

Chapter 5: Control Structures II
(Repetition)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 211

Objectives

In this chapter, you will:

• Learn about repetition (looping) control
structures

• Explore how to construct and use count-
controlled, sentinel-controlled, flag-controlled,
and EOF-controlled repetition structures

• Examine break and continue statements

• Discover how to form and use nested control
structures

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 212

Why Is Repetition Needed?

• Repetition allows you to efficiently use
variables

• Can input, add, and average multiple
numbers using a limited number of variables

• For example, to add five numbers:

− Declare a variable for each number, input the
numbers and add the variables together

− Create a loop that reads a number into a variable
and adds it to a variable that contains the sum of
the numbers

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 213

while Looping (Repetition)

Structure

• The general form of the while statement is:

 while is a reserved word

• Statement can be simple or compound

• Expression acts as a decision maker and is
usually a logical expression

• Statement is called the body of the loop

• The parentheses are part of the syntax

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 214

while Looping (Repetition)

Structure (continued)

• Infinite loop: continues to execute endlessly

− Avoided by including statements in loop body
that assure exit condition is eventually false

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 215

while Looping (Repetition)

Structure (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 216

Designing while Loops

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 217

Case 1: Counter-Controlled

while Loops

• If you know exactly how many pieces of data
need to be read, the while loop becomes a

counter-controlled loop

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 218

Case 2: Sentinel-Controlled

while Loops

• Sentinel variable is tested in the condition
and loop ends when sentinel is encountered

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 219

Telephone Digits

• Example 5-5 provides an example of a
sentinel-controlled loop

• The program converts uppercase letters to
their corresponding telephone digit

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 220

Case 3: Flag-Controlled while

Loops

• A flag-controlled while loop uses a bool

variable to control the loop

• The flag-controlled while loop takes the

form:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 221

Number Guessing Game

• Example 5-6 implements a number guessing
game using a flag-controlled while loop

• The program uses the function rand of the
header file cstdlib to generate a random

number

− rand() returns an int value between 0 and

32767

− To convert it to an integer greater than or
equal to 0 and less than 100:

• rand() % 100

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 222

Case 4: EOF-Controlled while

Loops

• Use an EOF (End Of File)-controlled while loop

• The logical value returned by cin can determine

if the program has ended input

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 223

eof Function

• The function eof can determine the end of

file status

• Like other I/O functions (get, ignore,
peek), eof is a member of data type
istream

• The syntax for the function eof is:

 where istreamVar is an input stream
variable, such as cin

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 224

More on Expressions in while

Statements

• The expression in a while statement can be

complex

− For example:
while ((noOfGuesses < 5) && (!isGuessed))

{

…
}

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 225

Programming Example: Checking

Account Balance

• A local bank in your town needs a program to
calculate a customer’s checking account
balance at the end of each month

• Data are stored in a file in the following form:
 467343 23750.40

 W 250.00

 D 1200

 W 75.00

 I 120.74

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 226

Programming Example: Checking

Account Balance (continued)

• The first line of data shows the account
number followed by the account balance at
the beginning of the month

• Thereafter each line has two entries:

− Transaction code

− Transaction amount

• Transaction codes
− W or w means withdrawal

− D or d means deposit

− I or i means interest paid by the bank

Programming Example: Checking

Account Balance (continued)

• Program updates balance after each
transaction

• During the month, if at any time the balance
goes below $1000.00, a $25.00 service fee is
charged

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 227

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 228

Programming Example: Checking

Account Balance (continued)

• Program prints the following information:

− Account number

− Balance at the beginning of the month

− Balance at the end of the month

− Interest paid by the bank

− Total amount of deposit

− Number of deposits

− Total amount of withdrawal

− Number of withdrawals

− Service charge if any

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 229

Programming Example: Input and

Output

• Input: file consisting of data in the previous
format

• Output is of the following form:
 Account Number: 467343

 Beginning Balance: $23750.40

 Ending Balance: $24611.49

 Interest Paid: $366.24

 Amount Deposited: $2230.50

 Number of Deposits: 3

 Amount Withdrawn: $1735.65

 Number of Withdrawals: 6

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 230

Programming Example: Program

Analysis

• The first entry in the input file is the account
number and the beginning balance

• Program first reads account number and
beginning balance

• Thereafter, each entry in the file is of the
following form:
 transactionCode transactionAmount

• To determine account balance, process each
entry that contains transaction code and
transaction amount

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 231

Programming Example: Program

Analysis (continued)

• Begin with starting balance and then update
account balance after processing each entry

• If transaction code is D, d, I, or i, transaction

amount is added to the account balance

• If the transaction code is W or w, transaction

amount is subtracted from the balance

• Keep separate counts of withdrawals and
deposits

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 232

Programming Example: Analysis

Algorithm

• Algorithm:

− Declare the variables

− Initialize the variables

− Get the account number and beginning
balance

− Get transaction code and transaction amount

− Analyze transaction code and update the
appropriate variables

− Repeat Steps 4 and 5 for all data

− Print the result

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 233

Programming Example: Variables

and Constants

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 234

Programming Example: Steps

• Declare variables as discussed previously

• Initialize variables

− isServiceCharged is initialized to false

− Read the beginning balance in the variable
beginningBalance from the file and
initialize the variable accountBalance to the
value of the variable beginningBalance

− Since the data will be read from a file, you
need to open input file

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 235

Programming Example: Steps

(continued)

• Get account number and starting balance

 infile >> acctNumber >> beginningBalance;

• Get transaction code and transaction amount

 infile >> transactionCode

 >> transactionAmount;

• Analyze transaction code and update
appropriate variables

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 236

Programming Example: Steps

(continued)

• Repeat Steps 4 and 5 until there is no more
data

− Since the number of entries in the input file is
not known, use an EOF-controlled while loop

• Print the result

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 237

Programming Example: Main

Algorithm

• Declare and initialize variables

• Open input file

• If input file does not exist, exit

• Open output file

• Output numbers in appropriate formats

• Read accountNumber and
beginningBalance

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 238

Programming Example: Main

Algorithm (continued)

• Set accountBalance to beginningBalance

• Read transactionCode and
transactionAmount

 while (not end of input file)
 if transactionCode is 'D' or 'd'

 Add transactionAmount to accountBalance

 Increment numberOfDeposits

 if transactionCode is 'I' or 'i'
 Add transactionAmount to accountBalance

 Add transactionAmount to interestPaid

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 239

Programming Example: Main

Algorithm (continued)

if transactionCode is 'W' or 'w'

Subtract transactionAmount from
accountBalance

Increment numberOfWithdrawals

if (accountBalance < MINIMUM_BALANCE

 && !isServicedCharged)

Subtract SERVICE_CHARGE from accountBalance

Set isServiceCharged to true

if transactionCode is other than 'D', 'd', 'I',
'i', 'W', or 'w', output an error message

• Output the results

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 240

for Looping (Repetition)

Structure

• The general form of the for statement is:

• The initial statement, loop
condition, and update statement are
called for loop control statements

− initial statement usually initializes a
variable (called the for loop control, or for

indexed, variable)

• In C++, for is a reserved word

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 241

for Looping (Repetition)

Structure (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 242

for Looping (Repetition)

Structure (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 243

for Looping (Repetition)

Structure (continued)

• C++ allows you to use fractional values for
loop control variables of the double type

− Results may differ

• The following is a semantic error:

• The following is a legal for loop:
 for (;;)
 cout << "Hello" << endl;

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 244

for Looping (Repetition)

Structure (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 245

do…while Looping (Repetition)

Structure

• General form of a do...while:

• The statement executes first, and then the
expression is evaluated

• To avoid an infinite loop, body must contain a
statement that makes the expression false

• The statement can be simple or compound

• Loop always iterates at least once

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 246

do…while Looping (Repetition)

Structure (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 247

do…while Looping (Repetition)

Structure (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 249

Divisibility Test by 3 and 9

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 250

Choosing the Right Looping

Structure

• All three loops have their place in C++

− If you know or can determine in advance the
number of repetitions needed, the for loop is

the correct choice

− If you do not know and cannot determine in
advance the number of repetitions needed,
and it could be zero, use a while loop

− If you do not know and cannot determine in
advance the number of repetitions needed,
and it is at least one, use a do...while loop

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 251

break and continue Statements

• break and continue alter the flow of control

• break statement is used for two purposes:

− To exit early from a loop

• Can eliminate the use of certain (flag) variables

− To skip the remainder of the switch structure

• After the break statement executes, the

program continues with the first statement
after the structure

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 252

break & continue Statements

(continued)

• continue is used in while, for, and
do…while structures

• When executed in a loop

− It skips remaining statements and proceeds
with the next iteration of the loop

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 253

Nested Control Structures

• To create the following pattern:
 *
 **

• We can use the following code:
 for (i = 1; i <= 5 ; i++)

 {
 for (j = 1; j <= i; j++)
 cout << "*";
 cout << endl;
 }

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 254

Nested Control Structures

(continued)

• What is the result if we replace the first for

statement with the following?

 for (i = 5; i >= 1; i--)

• Answer:

 **

 *

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 255

Summary

• C++ has three looping (repetition) structures:

− while, for, and do…while

• while, for, and do are reserved words

• while and for loops are called pretest

loops

• do...while loop is called a posttest loop

• while and for may not execute at all, but
do...while always executes at least once

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 256

Summary (continued)

• while: expression is the decision maker, and

the statement is the body of the loop

• A while loop can be:

− Counter-controlled

− Sentinel-controlled

− EOF-controlled

• In the Windows console environment, the
end-of-file marker is entered using Ctrl+z

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 257

Summary (continued)

• for loop: simplifies the writing of a counter-

controlled while loop

− Putting a semicolon at the end of the for loop

is a semantic error

• Executing a break statement in the body of a

loop immediately terminates the loop

• Executing a continue statement in the body

of a loop skips to the next iteration

C++ Programming:

 From Problem Analysis

 to Program Design, Fourth Edition

Chapter 6: User-Defined Functions I

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 259

Objectives

In this chapter, you will:

• Learn about standard (predefined) functions
and discover how to use them in a program

• Learn about user-defined functions

• Examine value-returning functions, including
actual and formal parameters

• Explore how to construct and use a value-
returning, user-defined function in a program

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 260

Introduction

• Functions are like building blocks

• They allow complicated programs to be
divided into manageable pieces

• Some advantages of functions:

− A programmer can focus on just that part of
the program and construct it, debug it, and
perfect it

− Different people can work on different
functions simultaneously

− Can be re-used (even in different programs)

− Enhance program readability

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 261

Introduction (continued)

• Functions

− Called modules

− Like miniature programs

− Can be put together to form a larger program

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 262

Predefined Functions

• In algebra, a function is defined as a rule or
correspondence between values, called the
function’s arguments, and the unique value of
the function associated with the arguments

− If f(x) = 2x + 5, then f(1) = 7,
f(2) = 9, and f(3) = 11

• 1, 2, and 3 are arguments

• 7, 9, and 11 are the corresponding values

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 263

Predefined Functions (continued)

• Some of the predefined mathematical functions
are:

 sqrt(x)

 pow(x, y)

 floor(x)

• Predefined functions are organized into
separate libraries

• I/O functions are in iostream header

• Math functions are in cmath header

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 264

Predefined Functions (continued)

• pow(x,y) calculates xy

− pow(2, 3) = 8.0

− Returns a value of type double

− x and y are the parameters (or arguments)

• The function has two parameters

• sqrt(x) calculates the nonnegative square
root of x, for x >= 0.0

− sqrt(2.25) is 1.5

− Type double

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 265

Predefined Functions (continued)

• The floor function floor(x) calculates
largest whole number not greater than x

− floor(48.79) is 48.0

− Type double

− Has only one parameter

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 266

Predefined Functions (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 267

Predefined Functions (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 269

Predefined Functions (continued)

• Example 6-1 sample run:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 270

User-Defined Functions

• Value-returning functions: have a return type

− Return a value of a specific data type using
the return statement

• Void functions: do not have a return type

− Do not use a return statement to return a

value

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 271

Value-Returning Functions

• To use these functions you must:

− Include the appropriate header file in your
program using the include statement

− Know the following items:

• Name of the function

• Number of parameters, if any

• Data type of each parameter

• Data type of the value returned: called the type
of the function

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 272

Value-Returning Functions

(continued)

• Because the value returned by a value-
returning function is unique, we must:

− Save the value for further calculation

− Use the value in some calculation

− Print the value

• A value-returning function is used in an
assignment or in an output statement

• One more thing is associated with functions:

− The code required to accomplish the task

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 273

Value-Returning Functions

(continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 274

Value-Returning Functions

(continued)

• Heading: first four properties above

− Example: int abs(int number)

• Formal Parameter: variable declared in the
heading

− Example: number

• Actual Parameter: variable or expression
listed in a call to a function

− Example: x = pow(u, v)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 275

Syntax: Value-Returning Function

• Syntax:

• functionType is also called the data type

or return type

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 276

Syntax: Formal Parameter List

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 277

Function Call

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 278

Syntax: Actual Parameter List

• The syntax of the actual parameter list is:

• Formal parameter list can be empty:

• A call to a value-returning function with an
empty formal parameter list is:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 279

return Statement

• Once a value-returning function computes the
value, the function returns this value via the
return statement

− It passes this value outside the function via the
return statement

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 280

Syntax: return Statement

• The return statement has the following

syntax:

• In C++, return is a reserved word

• When a return statement executes

− Function immediately terminates

− Control goes back to the caller

• When a return statement executes in the
function main, the program terminates

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 282

Function Prototype

• Function prototype: function heading without the body
of the function

• Syntax:

• It is not necessary to specify the variable name in the
parameter list

• The data type of each parameter must be specified

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 284

Function Prototype (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 285

Palindrome Number

• A nonnegative integer is a palindrome if it
reads forward and backward in the same way

− Examples: 5, 44, 789656987

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 286

Palindrome Number (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 287

Flow of Execution

• Execution always begins at the first statement
in the function main

• Other functions are executed only when they
are called

• Function prototypes appear before any
function definition

− The compiler translates these first

• The compiler can then correctly translate a
function call

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 288

Flow of Execution (continued)

• A function call results in transfer of control to
the first statement in the body of the called
function

• After the last statement of a function is
executed, control is passed back to the point
immediately following the function call

• A value-returning function returns a value

− After executing the function the returned value
replaces the function call statement

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 289

Programming Example: Largest

Number

• The function larger is used to determine the

largest number from a set of numbers

• Program determines the largest number from
a set of 10 numbers

• Input: a set of 10 numbers

• Output: the largest of 10 numbers

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 290

Programming Example: Program

Analysis

• Suppose that the input data is:

 15 20 7 8 28 21 43 12 35 3

• Read the first number of the data set

− Because this is the only number read to this
point, you may assume that it is the largest
number so far and call it max

• Read the second number and call it num

− Compare max and num, and store the larger
number into max

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 291

Programming Example: Program

Analysis (continued)

• Now max contains the larger of the first two

numbers

• Read the third number and compare it with
max and store the larger number into max

− max contains the largest of the first three

numbers

• Read the next number, compare it with max,
and store the larger into max

• Repeat this process for each remaining
number in the data set

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 292

Programming Example: Algorithm

Design

• Read the first number

− Because this is the only number that you have
read, it is the largest number so far

− Save it in a variable called max

• For each remaining number in the list

− Read the next number

− Store it in a variable called num

− Compare num and max

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 293

Programming Example: Algorithm

Design (continued)

• For each remaining number in the list
(continued)

− If max < num
• num is the new largest number

• update the value of max by copying num into max

− If max >= num, discard num; that is, do

nothing

• Because max now contains the largest

number, print it

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 294

Summary

• Functions (modules) are miniature programs

− Divide a program into manageable tasks

• C++ provides the standard functions

• Two types of user-defined functions: value-
returning functions and void functions

• Variables defined in a function heading are
called formal parameters

• Expressions, variables, or constant values in
a function call are called actual parameters

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 295

Summary (continued)

• In a function call, the number of actual
parameters and their types must match with
the formal parameters in the order given

• To call a function, use its name together with
the actual parameter list

• Function heading and the body of the function
are called the definition of the function

• If a function has no parameters, you need
empty parentheses in heading and call

• A value-returning function returns its value via
the return statement

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 296

Summary (continued)

• A prototype is the function heading without
the body of the function; prototypes end with
the semicolon

• Prototypes are placed before every function
definition, including main

• User-defined functions execute only when
they are called

• In a call statement, specify only the actual
parameters, not their data types

C++ Programming:

 From Problem Analysis

 to Program Design, Fourth Edition

Chapter 7: User-Defined Functions II

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 298

Objectives

In this chapter, you will:

• Learn how to construct and use void
functions in a program

• Discover the difference between value and
reference parameters

• Explore reference parameters and value-
returning functions

• Learn about the scope of an identifier

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 299

Objectives (continued)

• Examine the difference between local and
global identifiers

• Discover static variables

• Learn function overloading

• Explore functions with default parameters

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 300

Void Functions

• Void functions and value-returning functions
have similar structures

− Both have a heading part and a statement part

• User-defined void functions can be placed
either before or after the function main

• If user-defined void functions are placed after
the function main

− The function prototype must be placed before
the function main

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 301

Void Functions (continued)

• A void function does not have a return type

− return statement without any value is

typically used to exit the function early

• Formal parameters are optional

• A call to a void function is a stand-alone
statement

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 302

Void Functions without Parameters

• Function definition syntax:

• void is a reserved word

• Function call syntax:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 303

Void Functions with Parameters

• Function definition syntax:

• Formal parameter list syntax:

• Function call syntax:

• Actual parameter list syntax:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 304

Void Functions with Parameters

(continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 305

Void Functions with Parameters

(continued)

• Value parameter: a formal parameter that
receives a copy of the content of
corresponding actual parameter

• Reference parameter: a formal parameter
that receives the location (memory address)
of the corresponding actual parameter

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 306

Value Parameters

• If a formal parameter is a value parameter

− The value of the corresponding actual
parameter is copied into it

• The value parameter has its own copy of the
data

• During program execution

− The value parameter manipulates the data
stored in its own memory space

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 307

Reference Variables as Parameters

• If a formal parameter is a reference
parameter

− It receives the memory address of the
corresponding actual parameter

• A reference parameter stores the address of
the corresponding actual parameter

• During program execution to manipulate data

− The address stored in the reference parameter
directs it to the memory space of the
corresponding actual parameter

Reference Variables as Parameters

(continued)

• Reference parameters can:

− Pass one or more values from a function

− Change the value of the actual parameter

• Reference parameters are useful in three
situations:

− Returning more than one value

− Changing the actual parameter

− When passing the address would save
memory space and time

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 308

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 309

Calculate Grade

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 310

Calculate Grade (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 312

Value and Reference Parameters
and Memory Allocation

• When a function is called

− Memory for its formal parameters and
variables declared in the body of the function
(called local variables) is allocated in the
function data area

• In the case of a value parameter

− The value of the actual parameter is copied
into the memory cell of its corresponding
formal parameter

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 313

Value and Reference Parameters
and Memory Allocation (continued)

• In the case of a reference parameter

− The address of the actual parameter passes to
the formal parameter

• Content of formal parameter is an address

• During execution, changes made by the
formal parameter permanently change the
value of the actual parameter

• Stream variables (e.g., ifstream) should be

passed by reference to a function

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 321

Reference Parameters and Value-
Returning Functions

• You can also use reference parameters in a
value-returning function

− Not recommended

• By definition, a value-returning function
returns a single value

− This value is returned via the return statement

• If a function needs to return more than one
value, you should change it to a void function
and use the appropriate reference
parameters to return the values

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 322

Scope of an Identifier

• The scope of an identifier refers to where in
the program an identifier is accessible

• Local identifier: identifiers declared within a
function (or block)

• Global identifier: identifiers declared outside
of every function definition

• C++ does not allow nested functions

− The definition of one function cannot be
included in the body of another function

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 324

Scope of an Identifier (continued)

• Some compilers initialize global variables to
default values

• The operator :: is called the scope resolution

operator

• By using the scope resolution operator

− A global variable declared before the definition
of a function (block) can be accessed by the
function (or block) even if the function (or
block) has an identifier with the same name as
the variable

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 325

Scope of an Identifier (continued)

• C++ provides a way to access a global
variable declared after the definition of a
function

− In this case, the function must not contain any
identifier with the same name as the global
variable

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 326

Global Variables, Named

Constants, and Side Effects

• Using global variables has side effects

• A function that uses global variables is not
independent

• If more than one function uses the same
global variable and something goes wrong

− It is difficult to find what went wrong and where

− Problems caused in one area of the program
may appear to be from another area

• Global named constants have no side effects

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 327

Static and Automatic Variables

• Automatic variable: memory is allocated at
block entry and deallocated at block exit

− By default, variables declared within a block
are automatic variables

• Static variable: memory remains allocated as
long as the program executes

− Variables declared outside of any block are
static variables

− Declare a static variable within a block by
using the reserved word static

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 328

Static and Automatic Variables

(continued)

• The syntax for declaring a static variable is:

• The statement

 static int x;

declares x to be a static variable of the type int

• Static variables declared within a block are
local to the block

− Their scope is the same as any other local
identifier of that block

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 329

Function Overloading: An

Introduction

• In a C++ program, several functions can have
the same name

− This is called function overloading or
overloading a function name

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 330

Function Overloading (continued)

• Two functions are said to have different
formal parameter lists if both functions have:

− A different number of formal parameters, or

− If the number of formal parameters is the
same, then the data type of the formal
parameters, in the order you list them, must
differ in at least one position

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 331

• The following functions all have different
formal parameter lists:

• The following functions have the same formal
parameter list:

Function Overloading (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 332

Function Overloading (continued)

• Function overloading: creating several
functions with the same name

• The signature of a function consists of the
function name and its formal parameter list

• Two functions have different signatures if they
have either different names or different formal
parameter lists

• Note that the signature of a function does not
include the return type of the function

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 333

Function Overloading (continued)

• Correct function overloading:

• Syntax error:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 334

Functions with Default Parameters

• In a function call, the number of actual and
formal parameters must be the same

− C++ relaxes this condition for functions with
default parameters

• You specify the value of a default parameter
when the function name appears for the first
time (e.g., in the prototype)

• If you do not specify the value of a default
parameter, the default value is used

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 335

Functions with Default Parameters

(continued)

• All default parameters must be the rightmost
parameters of the function

• In a function call where the function has more
than one default parameter and a value to a
default parameter is not specified:

− You must omit all of the arguments to its right

• Default values can be constants, global
variables, or function calls

− However, you cannot assign a constant value
as a default value to a reference parameter

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 336

Functions with Default Parameters

(continued)

• Consider the following prototype:

• Assume:

− a, b are int, ch is char, d is double

• Examples of legal calls:

• Examples of illegal calls:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 337

Functions with Default Parameters

(continued)

• Examples of illegal function prototypes with
default parameters:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 338

Programming Example: Classify

Numbers

• In this example, we use functions to rewrite
the program that determines the number of
odds and evens from a given list of integers

• Main algorithm remains the same:

− Initialize variables, zeros, odds, evens to 0

− Read a number

− If number is even, increment the even count

• If number is also zero, increment the zero
count; else increment the odd count

− Repeat Steps 2-3 for each number in the list

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 339

Programming Example: Classify

Numbers (continued)

• The program functions include:

− initialize: initialize the variables, such as

zeros, odds, and evens

− getNumber: get the number

− classifyNumber: determine if number is

odd or even (and whether it is also zero); this
function also increments the appropriate count

− printResults: print the results

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 341

Programming Example: Main

Algorithm

• Call initialize to initialize variables

• Prompt the user to enter 20 numbers

• For each number in the list

− Call getNumber to read a number

− Output the number

− Call classifyNumber to classify the number

and increment the appropriate count

• Call printResults to print the final results

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 343

Summary

• Void function: does not have a data type

− A return statement without any value can be

used in a void function to exit it early

− The heading starts with the word void

− To call the function, you use the function name
together with the actual parameters in a stand-
alone statement

• Two types of formal parameters:

− Value parameters

− Reference parameters

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 344

Summary (continued)

• A value parameter receives a copy of its
corresponding actual parameter

• A reference parameter receives the memory
address of its corresponding actual parameter

− If a formal parameter needs to change the value
of an actual parameter, you must declare this
formal parameter as a reference parameter in
the function heading

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 345

Summary (continued)

• Variables declared within a function (or block)
are called local variables

• Variables declared outside of every function
definition (and block) are global variables

• Automatic variable: variable for which
memory is allocated on function/block entry
and deallocated on function/block exit

• Static variable: memory remains allocated
throughout the execution of the program

• C++ functions can have default parameters

C++ Programming:

 From Problem Analysis

 to Program Design, Fourth Edition

Chapter 8: User-Defined Simple Data
Types, Namespaces, and the

string Type

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 347

Objectives

In this chapter, you will:

• Learn how to create and manipulate your own
simple data type—called the enumeration
type

• Become familiar with the typedef statement

• Learn about the namespace mechanism

• Explore the string data type, and learn how
to use the various string functions to

manipulate strings

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 348

Enumeration Type

• Data type: a set of values together with a set
of operations on those values

• To define a new simple data type, called
enumeration type, we need three things:

− A name for the data type

− A set of values for the data type

− A set of operations on the values

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 349

Enumeration Type (continued)

• A new simple data type can be defined by
specifying its name and the values, but not
the operations

− The values must be identifiers

• Syntax:

− value1, value2, … are identifiers called
enumerators

− value1 < value2 < value3 <...

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 350

Enumeration Type (continued)

• Enumeration type is an ordered set of values

• If a value has been used in one enumeration
type it can’t be used by another in same block

• The same rules apply to enumeration types
declared outside of any blocks

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 351

Enumeration Type (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 353

Declaring Variables

• Syntax:

• For example, given the following definition:

 we can declare the following variables:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 354

Assignment

• The statement:

 popularSport = FOOTBALL;

 stores FOOTBALL into popularSport

• The statement:

 mySport = popularSport;

 copies the value of the popularSport into
mySport

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 355

Operations on Enumeration Types

• No arithmetic operations are allowed on
enumeration types

• ++ and -- are illegal too:

• Solution: use a static cast:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 356

Relational Operators

• An enumeration type is an ordered set of
values:

• Enumeration type is an integer data type and
can be used in loops:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 357

Input /Output of Enumeration
Types

• I/O are defined only for built-in data types

− Enumeration type cannot be input/output
(directly)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 358

Functions and Enumeration Types

• Enumeration types can be passed as
parameters to functions either by value or by
reference

• A function can return a value of the
enumeration type

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 359

Declaring Variables When
Defining the Enumeration Type

• You can declare variables of an enumeration
type when you define an enumeration type:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 360

Anonymous Data Types

• Anonymous type : values are directly
specified in the declaration, with no type name

• Drawbacks:

− Cannot pass/return an anonymous type to/from
a function

− Values used in one type can be used in
another, but are treated differently:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 361

typedef Statement

• You can create synonyms or aliases to a data
type using the typedef statement

• Syntax:

• typedef does not create any new data types

− Creates an alias to an existing data type

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 362

Namespaces

• ANSI/ISO standard C++ was officially
approved in July 1998

• Most of the recent compilers are also
compatible with ANSI/ISO standard C++

• For the most part, standard C++ and
ANSI/ISO standard C++ are the same

− However, ANSI/ISO Standard C++ has some
features not available in Standard C++

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 363

Namespaces (continued)

• Global identifiers in a header file used in a
program become global in the program

− Syntax error occurs if an identifier in a
program has the same name as a global
identifier in the header file

• Same problem can occur with third-party
libraries

− Common solution: third-party vendors begin
their global identifiers with _ (underscore)

• Do not begin identifiers in your program with _

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 364

Namespaces (continued)

• ANSI/ISO Standard C++ attempts to solve
this problem with the namespace mechanism

• Syntax:

 where a member is usually a variable
declaration, a named constant, a function, or
another namespace

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 365

Namespaces (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 366

Namespaces (continued)

• The scope of a namespace member is local

to the namespace

• Ways a namespace member can be
accessed outside the namespace:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 367

Accessing a namespace Member

• Examples:
 globalType::RATE

 globalType::printResult();

• After the using statement, it is not necessary
to precede the namespace_name:: before

the namespace member

− Unless a namespace member and a global

identifier or a block identifier have same name

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 368

string Type

• To use the data type string, the program
must include the header file string

• The statement:
 string name = "William Jacob";

 declares name to be a string variable and
also initializes name to "William Jacob"

− The first character, 'W', is in position 0

− The second character, 'i', is in position 1

− name is capable of storing any size string

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 369

string Type (continued)

• Binary operator + and the array subscript
operator [], have been defined for the data
type string

− + performs the string concatenation operation

• Example:

 str1 = "Sunny";

 str2 = str1 + " Day";

 stores "Sunny Day" into str2

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 370

Additional string Operations

• length

• size

• find

• substr

• swap

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 371

length Function

• Returns the number of characters currently in
the string

• Syntax:

 where strVar is variable of the type string

• length returns an unsigned integer

• The value returned can be stored in an integer
variable

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 373

size Function

• size is the same as the function length

− Both functions return the same value

• Syntax:

where strVar is variable of the type string

• As in the case of the function length, the
function size has no arguments

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 374

find Function

• Searches a string for the first occurrence of a
particular substring

• Returns an unsigned integer value of type
string::size_type

− Or string::npos if unsuccessful

• Syntax:

− strExp can be a string or a character

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 375

find Function (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 376

substr Function

• Returns a particular substring of a string

• Syntax:

expr1 and expr2 are expressions evaluating to

unsigned integers

− expr1 specifies a position within the string

(starting position of the substring)

− expr2 specifies the length of the substring to

be returned

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 377

substr Function (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 378

swap Function

• Interchanges contents of two string variables

• Syntax:

 where strVar1 and strVar2 are string

variables

• Suppose you have the following statements:

 string str1 = "Warm";

 string str2 = "Cold";

• After str1.swap(str2); executes, the value of
str1 is "Cold" and the value of str2 is "War"

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 379

Programming Example: Pig Latin

Strings

• Program prompts user to input a string

− Then outputs the string in the pig Latin form

• The rules for converting a string into pig Latin
form are as follows:

− If the string begins with a vowel, add the string
"-way" at the end of the string

• Example: the pig Latin form of "eye" is "eye-
way"

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 380

Programming Example: Pig Latin

Strings (continued)

• Rules (continued):

− If the string does not begin with a vowel, first
add "-" at the end of the string

• Then move the first character of the string to the
end of the string until the first character of the
string becomes a vowel

• Next, add the string "ay" at the end

• Example: pig Latin form of "There" is "ere-
Thay"

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 381

Programming Example: Pig Latin

Strings (continued)

• Rules (continued):

− Strings such as "by" contain no vowels

• The letter 'y' can be considered a vowel

• For this program the vowels are a, e, i, o, u, y, A,
E, I, O, U, and Y

− Strings such as "1234" contain no vowels

• The pig Latin form of a string that has no vowels
in it is the string followed by the string "-way"

• Example: pig Latin form of "1234" is "1234-
way"

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 382

Programming Example: Problem
Analysis

• If str denotes a string:

− Check the first character, str[0], of str

− If it is a vowel, add "-way" at the end of str

− If it is not a vowel:
• First add "-" at the end of the string

• Remove the first character of str from str and
put it at end of str

• Now the second character of str becomes the
first character of str

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 383

Programming Example: Problem

Analysis (continued)

• If str denotes a string (continued):

− This process is repeated until either

• The first character of str is a vowel

• All characters of str are processed, in which
case str does not contain any vowels

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 384

Programming Example: Algorithm

Design

• The program contains the following functions:

− isVowel determines if a character is a vowel

− rotate moves first character of str to the
end of str

− pigLatinString finds pig Latin form of str

• Steps in the algorithm:

− Get str

− Use pigLatinString to find the pig Latin
form of str

− Output the pig Latin form of str

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 385

Programming Example: Function
isVowel

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 386

Programming Example: Function
rotate

• Takes a string as a parameter

• Removes the first character of the string

− Places it at end of the string by extracting the
substring starting at position 1 until the end of
the string, then adding the first character of the
string

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 387

Programming Example: Function
pigLatinString

• If pStr[0] is a vowel, add "-way" at end

• If pStr[0] is not a vowel:

− Move first character of pStr to the end of pStr

− The second character of pStr becomes the first
character of pStr

• Now pStr may or may not contain a vowel

− Use a bool variable, foundVowel, which is set to
true if pStr contains a vowel and false

otherwise

− Initialize foundVowel to false

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 388

Programming Example: Function

pigLatinString (continued)

− If pStr[0] is not a vowel, move str[0] to
the end of pStr by calling the function
rotate

− Repeat third step until either the first character
of pStr becomes a vowel or all characters of
pStr have been checked

• Convert pStr into the pig Latin form

• Return pStr

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 389

Programming Example: Main

Algorithm

• Get the string

• Call pigLatinString to find the pig Latin

form of the string

• Output the pig Latin form of the string

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 390

Summary

• Enumeration type: set of ordered values

− Created with reserved word enum creates an

enumeration type

• No arithmetic operations are allowed on the
enumeration type

• Relational operators can be used with enum

values

• Enumeration type values cannot be input or
output directly

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 391

Summary (continued)

• Anonymous type: a variable’s values are
specified without any type name

• Reserved word typedef creates synonyms

or aliases to previously defined data types

• The namespace mechanism is a feature of
ANSI/ISO Standard C++

• A namespace member is usually a named
constant, variable, function, or another
namespace

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 392

Summary (continued)

• Keyword namespace must appear in the
using statement

• A string is a sequence of zero or more
characters

• Strings in C++ are enclosed in ""

• In C++, [] is the array subscript operator

• The function length returns the number of

characters currently in the string

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 393

Summary (continued)

• The function size returns the number of

characters currently in the string

• The function find searches a string to locate

the first occurrence of a particular substring

• The function substr returns a particular

substring of a string

• The function swap is used to swap the

contents of two string variables

C++ Programming:

 From Problem Analysis

 to Program Design, Fourth Edition

Chapter 9: Arrays and Strings

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 395

Objectives

In this chapter, you will:

• Learn about arrays

• Explore how to declare and manipulate data
into arrays

• Understand the meaning of “array index out
of bounds”

• Become familiar with the restrictions on array
processing

• Discover how to pass an array as a
parameter to a function

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 396

Objectives (continued)

• Learn about C-strings

• Examine the use of string functions to
process C-strings

• Discover how to input data into—and output
data from—a C-string

• Learn about parallel arrays

• Discover how to manipulate data in a two-
dimensional array

• Learn about multidimensional arrays

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 397

Data Types

• A data type is called simple if variables of that
type can store only one value at a time

• A structured data type is one in which each
data item is a collection of other data items

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 398

Arrays

• Array: a collection of a fixed number of
components wherein all of the components
have the same data type

• In a one-dimensional array, the components
are arranged in a list form

• Syntax for declaring a one-dimensional array:

 intExp evaluates to a positive integer

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 399

Arrays (continued)

• Example:

 int num[5];

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 400

Accessing Array Components

• General syntax:

 where indexExp, called an index, is any expression

whose value is a nonnegative integer

• Index value specifies the position of the
component in the array

• [] is the array subscripting operator

• The array index always starts at 0

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 401

Accessing Array Components

(continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 402

Accessing Array Components

(continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 403

Accessing Array Components

(continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 404

Accessing Array Components

(continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 405

Processing One-Dimensional Arrays

• Some basic operations performed on a one-
dimensional array are:

− Initializing

− Inputting data

− Outputting data stored in an array

− Finding the largest and/or smallest element

• Each operation requires ability to step through
the elements of the array

• Easily accomplished by a loop

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 406

Processing One-Dimensional Arrays
(continued)

• Consider the declaration

 int list[100]; //array of size 100

 int i;

• Using for loops to access array elements:

 for (i = 0; i < 100; i++) //Line 1

 //process list[i] //Line 2

• Example:
 for (i = 0; i < 100; i++) //Line 1

 cin >> list[i]; //Line 2

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 408

Array Index Out of Bounds

• If we have the statements:
 double num[10];
 int i;

• The component num[i] is valid if i = 0, 1, 2,
3, 4, 5, 6, 7, 8, or 9

• The index of an array is in bounds if the index
>=0 and the index <= ARRAY_SIZE-1

− Otherwise, we say the index is out of bounds

• In C++, there is no guard against indices that
are out of bounds

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 409

Array Initialization During

Declaration

• Arrays can be initialized during declaration

− In this case, it is not necessary to specify the size
of the array

• Size determined by the number of initial values in the
braces

• Example:
 double sales[] = {12.25, 32.50, 16.90, 23, 45.68};

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 410

Partial Initialization of Arrays

During Declaration

• The statement:

 int list[10] = {0};

 declares list to be an array of 10 components

and initializes all of them to zero

• The statement:

 int list[10] = {8, 5, 12};

 declares list to be an array of 10 components,
initializes list[0] to 8, list[1] to 5,
list[2] to 12 and all other components are
initialized to 0

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 411

Partial Initialization of Arrays

During Declaration (continued)

• The statement:

 int list[] = {5, 6, 3};

declares list to be an array of 3 components
and initializes list[0] to 5, list[1] to 6, and
list[2] to 3

• The statement:

 int list[25]= {4, 7};

declares an array of 25 components; initializes
list[0] to 4 and list[1] to 7; all other
components are initialized to 0

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 412

Some Restrictions on Array

Processing

• Consider the following statements:

• C++ does not allow aggregate operations on
an array:

• Solution:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 413

Some Restrictions on Array

Processing (continued)

• The following is illegal too:

• Solution:

• The following statements are legal, but do not
give the desired results:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 414

Arrays as Parameters to Functions

• Arrays are passed by reference only

• The symbol & is not used when declaring an

array as a formal parameter

• The size of the array is usually omitted

− If provided, it is ignored by the compiler

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 415

Constant Arrays as Formal

Parameters

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 416

Base Address of an Array and

Array in Computer Memory

• The base address of an array is the address, or
memory location of the first array component

• If list is a one-dimensional array, its base
address is the address of list[0]

• When we pass an array as a parameter, the
base address of the actual array is passed to
the formal parameter

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 418

Functions Cannot Return a Value

of the Type Array

• C++ does not allow functions to return a
value of the type array

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 419

Integral Data Type and Array

Indices

• C++ allows any integral type to be used as an
array index

• Example:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 420

Other Ways to Declare Arrays

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 421

C-Strings (Character Arrays)

• Character array: an array whose components
are of type char

• C-strings are null-terminated ('\0') character

arrays

• Example:

− 'A' is the character A

− "A" is the C-string A

• "A" represents two characters, 'A' and '\0‘

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 422

C-Strings (Character Arrays)

(continued)

• Consider the statement
 char name[16];

• Since C-strings are null terminated and name

has 16 components, the largest string that it
can store has 15 characters

• If you store a string of length, say 10 in name

− The first 11 components of name are used

and the last five are left unused

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 423

C-Strings (Character Arrays)

(continued)

• The statement

 char name[16] = "John";

 declares an array name of length 16 and
stores the C-string "John" in it

• The statement

 char name[] = "John";

 declares an array name of length 5 and stores
the C-string "John" in it

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 424

C-Strings (Character Arrays)

(continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 425

String Comparison

• C-strings are compared character by

character using the collating sequence of the
system

• If we are using the ASCII character set

− "Air" < "Boat"

− "Air" < "An"

− "Bill" < "Billy"

− "Hello" < "hello"

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 427

Reading and Writing Strings

• Most rules that apply to arrays apply to C-

strings as well

• Aggregate operations, such as assignment and
comparison, are not allowed on arrays

• Even the input/output of arrays is done
component-wise

• The one place where C++ allows aggregate
operations on arrays is the input and output of
C-strings (that is, character arrays)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 428

String Input

• cin >> name; stores the next input C-
string into name

• To read strings with blanks, use get:

 cin.get(str, m+1);

− Stores the next m characters into str but the
newline character is not stored in str

− If the input string has fewer than m
characters, the reading stops at the newline
character

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 429

String Output

• cout << name; outputs the content of name

on the screen

− << continues to write the contents of name

until it finds the null character

− If name does not contain the null character,

then we will see strange output

• << continues to output data from memory
adjacent to name until '\0' is found

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 430

Specifying Input/Output Files at

Execution Time

• You can let the user specify the name of the
input and/or output file at execution time:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 431

string Type and Input/Output

Files

• Argument to the function open must be a
null-terminated string (a C-string)

• If we use a variable of type string to read

the name of an I/O file, the value must first be
converted to a C-string before calling open

• Syntax:

 strVar.c_str()

where strVar is a variable of type string

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 432

Parallel Arrays

• Two (or more) arrays are called parallel if
their corresponding components hold related
information

• Example:

 int studentId[50];

 char courseGrade[50];

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 433

Two-Dimensional Arrays

• Two-dimensional array: collection of a fixed
number of components (of the same type)
arranged in two dimensions

− Sometimes called matrices or tables

• Declaration syntax:

 where intexp1 and intexp2 are expressions

yielding positive integer values, and specify the
number of rows and the number of columns,
respectively, in the array

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 434

Two-Dimensional Arrays

(continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 435

Accessing Array Components

• Syntax:

 where indexexp1 and indexexp2 are

expressions yielding nonnegative integer values,

and specify the row and column position

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 436

Accessing Array Components

(continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 437

Two-Dimensional Array

Initialization During Declaration

• Two-dimensional arrays can be initialized
when they are declared:

− Elements of each row are enclosed within
braces and separated by commas

− All rows are enclosed within braces

− For number arrays, if all components of a row
aren’t specified, unspecified ones are set to 0

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 438

Two-Dimensional Arrays and
Enumeration Types

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 439

Processing Two-Dimensional

Arrays

• Ways to process a two-dimensional array:

− Process the entire array

− Process a particular row of the array, called
row processing

− Process a particular column of the array,
called column processing

• Each row and each column of a two-
dimensional array is a one-dimensional array

− To process, use algorithms similar to
processing one-dimensional arrays

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 440

Processing Two-Dimensional

Arrays (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 441

Initialization

• To initialize row number 4 (i.e., fifth row) to 0

• To initialize the entire matrix to 0:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 442

Print

• To output the components of matrix:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 443

Input

• To input data into each component of
matrix:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 444

Sum by Row

• To find the sum of row number 4 of matrix:

• To find the sum of each individual row:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 445

Sum by Column

• To find the sum of each individual column:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 446

Largest Element in Each Row and

Each Column

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 447

Reversing Diagonal

• Before:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 448

Reversing Diagonal (continued)

• To reverse both the diagonals:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 449

Reversing Diagonal (continued)

• After:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 450

Passing Two-Dimensional Arrays as

Parameters to Functions

• Two-dimensional arrays can be passed as
parameters to a function

− Pass by reference

• Base address (address of first component of the
actual parameter) is passed to formal parameter

• Two-dimensional arrays are stored in row
order

• When declaring a two-dimensional array as a
formal parameter, can omit size of first
dimension, but not the second

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 451

Arrays of Strings

• Strings in C++ can be manipulated using
either the data type string or character arrays
(C-strings)

• On some compilers, the data type string

may not be available in Standard C++ (i.e.,
non-ANSI/ISO Standard C++)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 452

Arrays of Strings and the string

Type

• To declare an array of 100 components of
type string:

string list[100];

• Basic operations, such as assignment,
comparison, and input/output, can be
performed on values of the string type

• The data in list can be processed just like

any one-dimensional array

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 453

Arrays of Strings and C-Strings

(Character Arrays)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 454

Another Way to Declare a Two-

Dimensional Array

• Consider the following:

• To declare an array of 20 rows and 10
columns:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 455

Multidimensional Arrays

• Multidimensional array: collection of a fixed
number of elements (called components)
arranged in n dimensions (n >= 1)

− Also called an n-dimensional array

• Declaration syntax:

• To access a component:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 456

Multidimensional Arrays (continued)

• When declaring a multidimensional array as a
formal parameter in a function

− Can omit size of first dimension but not other
dimensions

• As parameters, multidimensional arrays are
passed by reference only

• A function cannot return a value of the type
array

• There is no check if the array indices are within
bounds

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 457

Programming Example: Code

Detection

• When a message is transmitted in secret code
over a transmission channel, it is usually
transmitted as a sequence of bits (0s and 1s)

• Due to noise in the transmission channel, the
transmitted message may become corrupted

− Message received at destination is not the
same as the message transmitted

− Some of the bits may have been changed

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 458

Programming Example: Code

Detection (continued)

• Several techniques to check the validity of the
transmitted message at the destination

• One technique is to transmit the same
message twice

− At the destination, both copies of the message
are compared bit by bit

− If the corresponding bits are the same, the
message received is error-free

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 459

Programming Example: Code

Detection (continued)

• We write a program to check if the message
received at the destination is error-free

• For simplicity, assume that:

− The secret code representing the message is
a sequence of digits (0 to 9)

− The maximum length of the message is 250
digits

• The first number in the message is the length
of the message

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 460

Programming Example: Code

Detection (continued)

• If the secret code is
 7 9 2 7 8 3 5 6

 then the message is seven digits long

• The above message is transmitted (twice) as
 7 9 2 7 8 3 5 6 7 9 2 7 8 3 5 6

• Input: a file containing the secret code and its
copy

• Output: the secret code, its copy, and a
message if the received code is error-free

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 461

Programming Example: Code

Detection (continued)

• The results are output in the following form:
 Code Digit Code Digit Copy

 9 9

 2 2

 7 7

 8 8

 3 3

 5 5

 6 6

• Message transmitted OK

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 462

Programming Example: Problem

Analysis

• Because we have to compare digits of the
secret code and its copy:

− First, read the secret code and store it in an
array

− Next, read first digit of the copy and compare it
with the first digit of the code, and so on

− If any corresponding digits are not the same,
print a message next to the digits

• The first number in the secret code, and in
the copy, indicates the length of the code

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 463

Programming Example: Algorithm

Design

• Open the input and output files

• If the input file does not exist, exit the
program

• Read the length of the secret code

• If the length of the secret code is greater than
250, terminate the program because the
maximum length of the code in this program
is 250

• Read and store the secret code into an array

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 464

Programming Example: Algorithm

Design (continued)

• Read the length of the copy

• If the length of the secret code and its copy
are the same, compare the codes; otherwise,
print an error message

• Note: To simplify function main, write a
function, readCode, to read the secret code
and another function, compareCode, to

compare the codes

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 465

Programming Example:
readCode

• First, read length of secret code

• If length of secret code is greater than 250

− Set lenCodeOk (a reference parameter) to
false and the function terminates

• Value of lenCodeOk is passed to calling

function to indicate if secret code was read
successfully

• If length of code is less than 250, readCode

reads and stores secret code into an array

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 466

Programming Example:

readCode (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 467

Programming Example:
compareCode

• Set a bool variable codeOk to true

• If length of code and copy are not equal

− Output error message and terminate function

• For each digit in input file

− Read the next digit of secret code copy

− Output digits from code and copy

− If corresponding digits are not equal, output
error message and set codeOk to false

• If codeOk, output message indicating code

transmitted OK, else output an error message

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 468

Programming Example:

compareCode (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 469

Programming Example:

compareCode (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 470

Programming Example: Main

Algorithm

• Declare variables

• Open the files

• Call readCode to read the secret code

• If (length of the secret code <= 250)

− Call compareCode to compare the codes

else

− Output an appropriate error message

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 471

Summary

• Array: structured data type with a fixed
number of components of the same type

− Components are accessed using their relative
positions in the array

• Elements of a one-dimensional array are
arranged in the form of a list

• An array index can be any expression that
evaluates to a nonnegative integer

− Must always be less than the size of the array

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 472

Summary (continued)

• The base address of an array is the address
of the first array component

• When passing an array as an actual
parameter, you use only its name

− Passed by reference only

• A function cannot return a value of the type
array

• In C++, C-strings are null terminated and are

stored in character arrays

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 473

Summary (continued)

• Commonly used C-string manipulation

functions include:

− strcpy, strcmp, and strlen

• Parallel arrays are used to hold related
information

• In a two-dimensional array, the elements are
arranged in a table form

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 474

Summary

• To access an element of a two-dimensional
array, you need a pair of indices:

− One for the row position

− One for the column position

• In row processing, a two-dimensional array is
processed one row at a time

• In column processing, a two-dimensional
array is processed one column at a time

